{"title":"An Analogue of the Strengthened Hanna Neumann Conjecture for Virtually Free Groups and Virtually Free Products","authors":"A. Klyachko, A. Zakharov","doi":"10.1307/mmj/20216105","DOIUrl":"https://doi.org/10.1307/mmj/20216105","url":null,"abstract":"The Friedman--Mineyev theorem, earlier known as the (strengthened) Hanna Neumann conjecture, gives a sharp estimate for the rank of the intersection of two subgroups in a free group. We obtain an analogue of this inequality for any two subgroups in a virtually free group (or, more generally, in a group containing a free product of left-orderable groups as a finite-index subgroup).","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73625014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Khovanov Homology for Links in Thickened Multipunctured Disks","authors":"Zachary Winkeler","doi":"10.1307/mmj/20216166","DOIUrl":"https://doi.org/10.1307/mmj/20216166","url":null,"abstract":"We define a variant of Khovanov homology for links in thickened disks with multiple punctures. This theory is distinct from the one previously defined by Asaeda, Przytycki, and Sikora, but is related to it by a spectral sequence. Additionally, we show that there are spectral sequences induced by embeddings of thickened surfaces, which recover the spectral sequence from annular Khovanov homology to Khovanov homology as a special case.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76270457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-Similar Surfaces: Involutions and Perfection","authors":"Justin Malestein, Jing Tao","doi":"10.1307/mmj/20216114","DOIUrl":"https://doi.org/10.1307/mmj/20216114","url":null,"abstract":"We investigate the problem of when big mapping class groups are generated by involutions. Restricting our attention to the class of self-similar surfaces, which are surfaces with self-similar ends space, as defined by Mann and Rafi, and with 0 or infinite genus, we show that, when the set of maximal ends is infinite, then the mapping class groups of these surfaces are generated by involutions, normally generated by a single involution, and uniformly perfect. In fact, we derive this statement as a corollary of the corresponding statement for the homeomorphism groups of these surfaces. On the other hand, among self-similar surfaces with one maximal end, we produce infinitely many examples in which their big mapping class groups are neither perfect nor generated by torsion elements. These groups also do not have the automatic continuity property.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74466271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Distribution mod p of Euler’s Totient and the Sum of Proper Divisors","authors":"Noah Lebowitz-Lockard, P. Pollack, A. Roy","doi":"10.1307/mmj/20216082","DOIUrl":"https://doi.org/10.1307/mmj/20216082","url":null,"abstract":"Abstract. We consider the distribution in residue classes modulo primes p of Euler’s totient function φ(n) and the sum-of-proper-divisors function s(n) := σ(n)−n. We prove that the values φ(n), for n ≤ x, that are coprime to p are asymptotically uniformly distributed among the p−1 coprime residue classes modulo p, uniformly for 5 ≤ p ≤ (log x) (with A fixed but arbitrary). We also show that the values of s(n), for n composite, are uniformly distributed among all p residue classes modulo every p ≤ (log x). These appear to be the first results of their kind where the modulus is allowed to grow substantially with x.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73345891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Generic Stabilizers for Simple Algebraic Groups","authors":"S. Garibaldi, R. Guralnick","doi":"10.1307/mmj/20217216","DOIUrl":"https://doi.org/10.1307/mmj/20217216","url":null,"abstract":"We prove a myriad of results related to the stabilizer in an algebraic group $G$ of a generic vector in a representation $V$ of $G$ over an algebraically closed field $k$. Our results are on the level of group schemes, which carries more information than considering both the Lie algebra of $G$ and the group $G(k)$ of $k$-points. For $G$ simple and $V$ faithful and irreducible, we prove the existence of a stabilizer in general position, sometimes called a principal orbit type. We determine those $G$ and $V$ for which the stabilizer in general position is smooth, or $dim V/G<dim G$, or there is a $v in V$ whose stabilizer in $G$ is trivial.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86354346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Weyl Sums over Integers with Digital Restrictions","authors":"I. Shparlinski, J. Thuswaldner","doi":"10.1307/mmj/20216094","DOIUrl":"https://doi.org/10.1307/mmj/20216094","url":null,"abstract":"We estimate Weyl sums over the integers with sum of binary digits either fixed or restricted by some congruence condition. In our proofs we use ideas that go back to a paper by Banks, Conflitti and the first author (2002). Moreover, we apply the “main conjecture” on the Vinogradov mean value theorem which has been established by Bourgain, Demeter and Guth (2016) as well as by Wooley (2016, 2019). We use our result to give an estimate of the discrepancy of point sets that are defined by the values of polynomials at arguments having the sum of binary digits restricted in different ways.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84339093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Acylindrically Hyperbolic Groups and Their Quasi-Isometrically Embedded Subgroups","authors":"Carolyn R. Abbott, J. Manning","doi":"10.1307/mmj/20216112","DOIUrl":"https://doi.org/10.1307/mmj/20216112","url":null,"abstract":"We abstract the notion of an A/QI triple from a number of examples in geometric group theory. Such a triple (G,X,H) consists of a group G acting on a Gromov hyperbolic space X, acylindrically along a finitely generated subgroup H which is quasi-isometrically embedded by the action. Examples include strongly quasi-convex subgroups of relatively hyperbolic groups, convex cocompact subgroups of mapping class groups, many known convex cocompact subgroups of Out(Fn), and groups generated by powers of independent loxodromic WPD elements of a group acting on a Gromov hyperbolic space. We initiate the study of intersection and combination properties of A/QI triples. Under the additional hypothesis that G is finitely generated, we use a method of Sisto to show that H is stable. We apply theorems of Kapovich--Rafi and Dowdall--Taylor to analyze the Gromov boundary of an associated cone-off. We close with some examples and questions.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80868968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiplicity Along Points of a Radicial Covering of a Regular Variety","authors":"Diego Sulca, O. Villamayor","doi":"10.1307/MMJ/20195775","DOIUrl":"https://doi.org/10.1307/MMJ/20195775","url":null,"abstract":"We study the maximal multiplicity locus of a variety X over a field of characteristic p > 0 that is provided with a finite surjective radicial morphism δ : X → V , where V is regular, for example, when X ⊂ A is a hypersurface defined by an equation of the form T −f(x1, . . . , xn) = 0 and δ is the projection onto V := Spec(k[x1, . . . , xn]). The multiplicity along points of X is bounded by the degree, say d, of the field extension K(V ) ⊂ K(X). We denote by Fd(X) ⊂ X the set of points of multiplicity d. Our guiding line is the search for invariants of singularities x ∈ Fd(X) with a good behavior property under blowups X → X along regular centers included in Fd(X), which we call invariants with the pointwise inequality property. A finite radicial morphism δ : X → V as above will be expressed in terms of an O V -submodule M ⊆ OV . A blowup X → X along a regular equimultiple center included in Fd(X) induces a blowup V ′ → V along a regular center and a finite morphism δ : X → V . A notion of transform of the O V -module M ⊂ OV to an O V ′ -module M ′ ⊂ OV ′ will be defined in such a way that δ ′ : X → V ′ is the radicial morphism defined by M . Our search for invariants relies on techniques involving differential operators on regular varieties and also on logarithmic differential operators. Indeed, the different invariants we introduce and the stratification they define will be expressed in terms of ideals obtained by evaluating differential operators of V on O V -submodules M ⊂ OV .","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82553534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effective Discreteness Radius of Stabilizers for Stationary Actions","authors":"T. Gelander, Arie Levit, G. Margulis","doi":"10.1307/mmj/20217209","DOIUrl":"https://doi.org/10.1307/mmj/20217209","url":null,"abstract":"We prove an effective variant of the Kazhdan-Margulis theorem generalized to stationary actions of semisimple groups over local fields: the probability that the stabilizer of a random point admits a non-trivial intersection with a small $r$-neighborhood of the identity is at most $beta r^delta$ for some explicit constants $beta, delta>0$ depending only the group. This is a consequence of a key convolution inequality. We deduce that vanishing at infinity of injectivity radius implies finiteness of volume. Further applications are the compactness of the space of discrete stationary random subgroups and a novel proof of the fact that all lattices in semisimple groups are weakly cocompact.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88688339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extremizers and Stability of the Betke–Weil Inequality","authors":"F. Bartha, Ferenc Bencs, K. Boroczky, D. Hug","doi":"10.1307/mmj/20216063","DOIUrl":"https://doi.org/10.1307/mmj/20216063","url":null,"abstract":"Let K be a compact convex domain in the Euclidean plane. The mixed area A(K,−K) of K and−K can be bounded from above by 1/(6 √ 3)L(K)2, where L(K) is the perimeter of K. This was proved by Ulrich Betke and Wolfgang Weil (1991). They also showed that if K is a polygon, then equality holds if and only if K is a regular triangle. We prove that among all convex domains, equality holds only in this case, as conjectured by Betke and Weil. This is achieved by establishing a stronger stability result for the geometric inequality 6 √ 3A(K,−K) ≤ L(K)2.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76577628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}