A Generalization of Pisier Homogeneous Banach Algebra

IF 0.8 3区 数学 Q2 MATHEMATICS
Safari Mukeru
{"title":"A Generalization of Pisier Homogeneous Banach Algebra","authors":"Safari Mukeru","doi":"10.1307/mmj/20205914","DOIUrl":null,"url":null,"abstract":"In 1979 Pisier proved remarkably that a sequence of independent and identically distributed standard Gaussian random variables determines, via random Fourier series, a homogeneous Banach algebra P strictly contained in C(T), the class of continuous functions on the unit circle T and strictly containing the classical Wiener algebra A(T), that is, A(T) $ P $ C(T). This improved some previous results obtained by Zafran in solving a long-standing problem raised by Katznelson. In this paper we extend Pisier’s result by showing that any probability measure on the unit circle defines a homogeneous Banach algebra contained in C(T). Thus Pisier algebra is not an isolated object but rather an element in a large class of Pisier-type algebras. We consider the case of spectral measures of stationary sequences of Gaussian random variables and obtain a sufficient condition for the boundedness of the random Fourier series ∑ n∈Z f̂(n) ξn exp(2πint) in the general setting of dependent random variables (ξn).","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":"88 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20205914","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

In 1979 Pisier proved remarkably that a sequence of independent and identically distributed standard Gaussian random variables determines, via random Fourier series, a homogeneous Banach algebra P strictly contained in C(T), the class of continuous functions on the unit circle T and strictly containing the classical Wiener algebra A(T), that is, A(T) $ P $ C(T). This improved some previous results obtained by Zafran in solving a long-standing problem raised by Katznelson. In this paper we extend Pisier’s result by showing that any probability measure on the unit circle defines a homogeneous Banach algebra contained in C(T). Thus Pisier algebra is not an isolated object but rather an element in a large class of Pisier-type algebras. We consider the case of spectral measures of stationary sequences of Gaussian random variables and obtain a sufficient condition for the boundedness of the random Fourier series ∑ n∈Z f̂(n) ξn exp(2πint) in the general setting of dependent random variables (ξn).
Pisier齐次Banach代数的推广
1979年,Pisier显著地证明了一个独立的同分布的标准高斯随机变量序列,通过随机傅立叶级数,决定了严格包含在C(T)中的齐次巴纳赫代数P,严格包含经典维纳代数a (T)的单位圆T上的连续函数类,即a (T) $ P $ C(T)。这改进了Zafran在解决卡兹尼尔森提出的一个长期存在的问题时获得的一些先前的结果。本文推广了Pisier的结果,证明了单位圆上的任何概率测度都定义了C(T)中包含的齐次Banach代数。因此,皮西耶代数不是一个孤立的对象,而是一个大的皮西耶代数类的元素。考虑高斯随机变量平稳序列谱测度的情况,得到了随机傅里叶级数∑n∈Z f²(n) ξn exp(2πint)在相依随机变量(ξn)一般设置下有界性的一个充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
50
审稿时长
>12 weeks
期刊介绍: The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信