Betke-Weil不等式的极值型与稳定性

Pub Date : 2021-03-22 DOI:10.1307/mmj/20216063
F. Bartha, Ferenc Bencs, K. Boroczky, D. Hug
{"title":"Betke-Weil不等式的极值型与稳定性","authors":"F. Bartha, Ferenc Bencs, K. Boroczky, D. Hug","doi":"10.1307/mmj/20216063","DOIUrl":null,"url":null,"abstract":"Let K be a compact convex domain in the Euclidean plane. The mixed area A(K,−K) of K and−K can be bounded from above by 1/(6 √ 3)L(K)2, where L(K) is the perimeter of K. This was proved by Ulrich Betke and Wolfgang Weil (1991). They also showed that if K is a polygon, then equality holds if and only if K is a regular triangle. We prove that among all convex domains, equality holds only in this case, as conjectured by Betke and Weil. This is achieved by establishing a stronger stability result for the geometric inequality 6 √ 3A(K,−K) ≤ L(K)2.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extremizers and Stability of the Betke–Weil Inequality\",\"authors\":\"F. Bartha, Ferenc Bencs, K. Boroczky, D. Hug\",\"doi\":\"10.1307/mmj/20216063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let K be a compact convex domain in the Euclidean plane. The mixed area A(K,−K) of K and−K can be bounded from above by 1/(6 √ 3)L(K)2, where L(K) is the perimeter of K. This was proved by Ulrich Betke and Wolfgang Weil (1991). They also showed that if K is a polygon, then equality holds if and only if K is a regular triangle. We prove that among all convex domains, equality holds only in this case, as conjectured by Betke and Weil. This is achieved by establishing a stronger stability result for the geometric inequality 6 √ 3A(K,−K) ≤ L(K)2.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20216063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20216063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设K是欧几里德平面上的紧凸定义域。K和- K的混合面积A(K,−K)可以从上面以1/(6√3)L(K)2为界,其中L(K)是K的周长,这是由Ulrich Betke和Wolfgang Weil(1991)证明的。他们还证明了如果K是一个多边形,那么等式成立当且仅当K是一个正三角形。我们证明了在所有凸域中,等式只在这种情况下成立,正如Betke和Weil推测的那样。这是通过建立几何不等式6√3A(K,−K)≤L(K)2的更强的稳定性结果来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Extremizers and Stability of the Betke–Weil Inequality
Let K be a compact convex domain in the Euclidean plane. The mixed area A(K,−K) of K and−K can be bounded from above by 1/(6 √ 3)L(K)2, where L(K) is the perimeter of K. This was proved by Ulrich Betke and Wolfgang Weil (1991). They also showed that if K is a polygon, then equality holds if and only if K is a regular triangle. We prove that among all convex domains, equality holds only in this case, as conjectured by Betke and Weil. This is achieved by establishing a stronger stability result for the geometric inequality 6 √ 3A(K,−K) ≤ L(K)2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信