Weyl Sums over Integers with Digital Restrictions

IF 0.8 3区 数学 Q2 MATHEMATICS
I. Shparlinski, J. Thuswaldner
{"title":"Weyl Sums over Integers with Digital Restrictions","authors":"I. Shparlinski, J. Thuswaldner","doi":"10.1307/mmj/20216094","DOIUrl":null,"url":null,"abstract":"We estimate Weyl sums over the integers with sum of binary digits either fixed or restricted by some congruence condition. In our proofs we use ideas that go back to a paper by Banks, Conflitti and the first author (2002). Moreover, we apply the “main conjecture” on the Vinogradov mean value theorem which has been established by Bourgain, Demeter and Guth (2016) as well as by Wooley (2016, 2019). We use our result to give an estimate of the discrepancy of point sets that are defined by the values of polynomials at arguments having the sum of binary digits restricted in different ways.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20216094","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We estimate Weyl sums over the integers with sum of binary digits either fixed or restricted by some congruence condition. In our proofs we use ideas that go back to a paper by Banks, Conflitti and the first author (2002). Moreover, we apply the “main conjecture” on the Vinogradov mean value theorem which has been established by Bourgain, Demeter and Guth (2016) as well as by Wooley (2016, 2019). We use our result to give an estimate of the discrepancy of point sets that are defined by the values of polynomials at arguments having the sum of binary digits restricted in different ways.
带数字限制的整数上的Weyl和
我们估计整数上的Weyl和,其中二进制数的和是固定的或受某些同余条件的限制。在我们的证明中,我们使用的思想可以追溯到Banks, Conflitti和第一作者(2002)的一篇论文。此外,我们将“主猜想”应用于由Bourgain, Demeter和Guth(2016)以及Wooley(2016, 2019)建立的Vinogradov中值定理。我们用我们的结果给出了点集的差异估计,这些点集是由多项式的值所定义的,这些多项式的值以不同的方式限制了二进制数的和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
50
审稿时长
>12 weeks
期刊介绍: The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信