Distribution mod p of Euler’s Totient and the Sum of Proper Divisors

Pub Date : 2021-05-26 DOI:10.1307/mmj/20216082
Noah Lebowitz-Lockard, P. Pollack, A. Roy
{"title":"Distribution mod p of Euler’s Totient and the Sum of Proper Divisors","authors":"Noah Lebowitz-Lockard, P. Pollack, A. Roy","doi":"10.1307/mmj/20216082","DOIUrl":null,"url":null,"abstract":"Abstract. We consider the distribution in residue classes modulo primes p of Euler’s totient function φ(n) and the sum-of-proper-divisors function s(n) := σ(n)−n. We prove that the values φ(n), for n ≤ x, that are coprime to p are asymptotically uniformly distributed among the p−1 coprime residue classes modulo p, uniformly for 5 ≤ p ≤ (log x) (with A fixed but arbitrary). We also show that the values of s(n), for n composite, are uniformly distributed among all p residue classes modulo every p ≤ (log x). These appear to be the first results of their kind where the modulus is allowed to grow substantially with x.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20216082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract. We consider the distribution in residue classes modulo primes p of Euler’s totient function φ(n) and the sum-of-proper-divisors function s(n) := σ(n)−n. We prove that the values φ(n), for n ≤ x, that are coprime to p are asymptotically uniformly distributed among the p−1 coprime residue classes modulo p, uniformly for 5 ≤ p ≤ (log x) (with A fixed but arbitrary). We also show that the values of s(n), for n composite, are uniformly distributed among all p residue classes modulo every p ≤ (log x). These appear to be the first results of their kind where the modulus is allowed to grow substantially with x.
分享
查看原文
欧拉定理的分布模p与真除数和
摘要考虑欧拉全幂函数φ(n)和性质因子和函数s(n)的模素数p在剩余类中的分布:= σ(n)−n。证明了当n≤x为p的对素数的值φ(n)在模p的p−1个对素数残馀类中渐近均匀分布,且当5≤p≤(log x) (A固定但任意)时,φ(n)是一致的。我们还证明了对于n复合,s(n)的值均匀分布于所有p≤(log x)的模的p个剩余类中。这些似乎是这类的第一个结果,其中模允许随x大幅度增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信