欧拉定理的分布模p与真除数和

Pub Date : 2021-05-26 DOI:10.1307/mmj/20216082
Noah Lebowitz-Lockard, P. Pollack, A. Roy
{"title":"欧拉定理的分布模p与真除数和","authors":"Noah Lebowitz-Lockard, P. Pollack, A. Roy","doi":"10.1307/mmj/20216082","DOIUrl":null,"url":null,"abstract":"Abstract. We consider the distribution in residue classes modulo primes p of Euler’s totient function φ(n) and the sum-of-proper-divisors function s(n) := σ(n)−n. We prove that the values φ(n), for n ≤ x, that are coprime to p are asymptotically uniformly distributed among the p−1 coprime residue classes modulo p, uniformly for 5 ≤ p ≤ (log x) (with A fixed but arbitrary). We also show that the values of s(n), for n composite, are uniformly distributed among all p residue classes modulo every p ≤ (log x). These appear to be the first results of their kind where the modulus is allowed to grow substantially with x.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Distribution mod p of Euler’s Totient and the Sum of Proper Divisors\",\"authors\":\"Noah Lebowitz-Lockard, P. Pollack, A. Roy\",\"doi\":\"10.1307/mmj/20216082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We consider the distribution in residue classes modulo primes p of Euler’s totient function φ(n) and the sum-of-proper-divisors function s(n) := σ(n)−n. We prove that the values φ(n), for n ≤ x, that are coprime to p are asymptotically uniformly distributed among the p−1 coprime residue classes modulo p, uniformly for 5 ≤ p ≤ (log x) (with A fixed but arbitrary). We also show that the values of s(n), for n composite, are uniformly distributed among all p residue classes modulo every p ≤ (log x). These appear to be the first results of their kind where the modulus is allowed to grow substantially with x.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20216082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20216082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要考虑欧拉全幂函数φ(n)和性质因子和函数s(n)的模素数p在剩余类中的分布:= σ(n)−n。证明了当n≤x为p的对素数的值φ(n)在模p的p−1个对素数残馀类中渐近均匀分布,且当5≤p≤(log x) (A固定但任意)时,φ(n)是一致的。我们还证明了对于n复合,s(n)的值均匀分布于所有p≤(log x)的模的p个剩余类中。这些似乎是这类的第一个结果,其中模允许随x大幅度增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Distribution mod p of Euler’s Totient and the Sum of Proper Divisors
Abstract. We consider the distribution in residue classes modulo primes p of Euler’s totient function φ(n) and the sum-of-proper-divisors function s(n) := σ(n)−n. We prove that the values φ(n), for n ≤ x, that are coprime to p are asymptotically uniformly distributed among the p−1 coprime residue classes modulo p, uniformly for 5 ≤ p ≤ (log x) (with A fixed but arbitrary). We also show that the values of s(n), for n composite, are uniformly distributed among all p residue classes modulo every p ≤ (log x). These appear to be the first results of their kind where the modulus is allowed to grow substantially with x.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信