{"title":"稳定作用下稳定器的有效离散半径","authors":"T. Gelander, Arie Levit, G. Margulis","doi":"10.1307/mmj/20217209","DOIUrl":null,"url":null,"abstract":"We prove an effective variant of the Kazhdan-Margulis theorem generalized to stationary actions of semisimple groups over local fields: the probability that the stabilizer of a random point admits a non-trivial intersection with a small $r$-neighborhood of the identity is at most $\\beta r^\\delta$ for some explicit constants $\\beta, \\delta>0$ depending only the group. This is a consequence of a key convolution inequality. We deduce that vanishing at infinity of injectivity radius implies finiteness of volume. Further applications are the compactness of the space of discrete stationary random subgroups and a novel proof of the fact that all lattices in semisimple groups are weakly cocompact.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":"5 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effective Discreteness Radius of Stabilizers for Stationary Actions\",\"authors\":\"T. Gelander, Arie Levit, G. Margulis\",\"doi\":\"10.1307/mmj/20217209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove an effective variant of the Kazhdan-Margulis theorem generalized to stationary actions of semisimple groups over local fields: the probability that the stabilizer of a random point admits a non-trivial intersection with a small $r$-neighborhood of the identity is at most $\\\\beta r^\\\\delta$ for some explicit constants $\\\\beta, \\\\delta>0$ depending only the group. This is a consequence of a key convolution inequality. We deduce that vanishing at infinity of injectivity radius implies finiteness of volume. Further applications are the compactness of the space of discrete stationary random subgroups and a novel proof of the fact that all lattices in semisimple groups are weakly cocompact.\",\"PeriodicalId\":49820,\"journal\":{\"name\":\"Michigan Mathematical Journal\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Michigan Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20217209\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20217209","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Effective Discreteness Radius of Stabilizers for Stationary Actions
We prove an effective variant of the Kazhdan-Margulis theorem generalized to stationary actions of semisimple groups over local fields: the probability that the stabilizer of a random point admits a non-trivial intersection with a small $r$-neighborhood of the identity is at most $\beta r^\delta$ for some explicit constants $\beta, \delta>0$ depending only the group. This is a consequence of a key convolution inequality. We deduce that vanishing at infinity of injectivity radius implies finiteness of volume. Further applications are the compactness of the space of discrete stationary random subgroups and a novel proof of the fact that all lattices in semisimple groups are weakly cocompact.
期刊介绍:
The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.