约化群方案何时是线性的?

Pub Date : 2021-03-12 DOI:10.1307/mmj/20217208
P. Gille
{"title":"约化群方案何时是线性的?","authors":"P. Gille","doi":"10.1307/mmj/20217208","DOIUrl":null,"url":null,"abstract":"We show that a reductive group scheme over a base scheme S admits a faithful linear representation if and only if its radical torus is isotrivial, that is, it splits after a finite {\\'e}tale cover.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"When Is a Reductive Group Scheme Linear?\",\"authors\":\"P. Gille\",\"doi\":\"10.1307/mmj/20217208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that a reductive group scheme over a base scheme S admits a faithful linear representation if and only if its radical torus is isotrivial, that is, it splits after a finite {\\\\'e}tale cover.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20217208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20217208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们证明了基方案S上的约化群方案当且仅当它的根环面是等平凡的,即它在一个有限的{\'e}层盖之后分裂,它承认一个忠实的线性表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
When Is a Reductive Group Scheme Linear?
We show that a reductive group scheme over a base scheme S admits a faithful linear representation if and only if its radical torus is isotrivial, that is, it splits after a finite {\'e}tale cover.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信