Nonlinear Analysis-Theory Methods & Applications最新文献

筛选
英文 中文
On the persistence properties for the fractionary BBM equation with low dispersion in weighted Sobolev spaces 论加权索波列夫空间中具有低分散性的分式 BBM 方程的持续特性
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-09-04 DOI: 10.1016/j.na.2024.113653
Germán Fonseca, Oscar Riaño, Guillermo Rodriguez-Blanco
{"title":"On the persistence properties for the fractionary BBM equation with low dispersion in weighted Sobolev spaces","authors":"Germán Fonseca,&nbsp;Oscar Riaño,&nbsp;Guillermo Rodriguez-Blanco","doi":"10.1016/j.na.2024.113653","DOIUrl":"10.1016/j.na.2024.113653","url":null,"abstract":"<div><p>We consider the initial value problem associated to the low dispersion fractionary Benjamin–Bona–Mahony equation, fBBM. Our aim is to establish local persistence results in weighted Sobolev spaces and to obtain unique continuation results that imply that those results above are sharp. Hence, arbitrary polynomial type decay is not preserved by the fBBM flow.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X2400172X/pdfft?md5=deedf93280597ef7b37c6bea9b954b83&pid=1-s2.0-S0362546X2400172X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability of the logarithmic Sobolev inequality and uncertainty principle for the Tsallis entropy 对数索波列夫不等式的稳定性和查里斯熵的不确定性原理
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-08-31 DOI: 10.1016/j.na.2024.113644
Takeshi Suguro
{"title":"Stability of the logarithmic Sobolev inequality and uncertainty principle for the Tsallis entropy","authors":"Takeshi Suguro","doi":"10.1016/j.na.2024.113644","DOIUrl":"10.1016/j.na.2024.113644","url":null,"abstract":"<div><p>We consider the stability of the functional inequalities concerning the entropy functional. For the Boltzmann–Shannon entropy, the logarithmic Sobolev inequality holds as a lower bound of the entropy by the Fisher information, and the Heisenberg uncertainty principle follows from combining it with the Shannon inequality. The optimizer for these inequalities is the Gauss function, which is a fundamental solution to the heat equation. In the fields of statistical mechanics and information theory, the Tsallis entropy is known as a one-parameter extension of the Boltzmann–Shannon entropy, and the Wasserstein gradient flow of it corresponds to the quasilinear diffusion equation. We consider the improvement and stability of the optimizer for the logarithmic Sobolev inequality related to the Tsallis entropy. Furthermore, we show the stability results of the uncertainty principle concerning the Tsallis entropy.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X24001639/pdfft?md5=6bfcdd2737c232c0665680eef2bf811d&pid=1-s2.0-S0362546X24001639-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142094884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Injectivity of polynomial maps and foliations in the real plane 实平面多项式映射和叶形的注入性
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-08-26 DOI: 10.1016/j.na.2024.113645
Francisco Braun , Filipe Fernandes , Bruna Oréfice-Okamoto
{"title":"Injectivity of polynomial maps and foliations in the real plane","authors":"Francisco Braun ,&nbsp;Filipe Fernandes ,&nbsp;Bruna Oréfice-Okamoto","doi":"10.1016/j.na.2024.113645","DOIUrl":"10.1016/j.na.2024.113645","url":null,"abstract":"<div><p>We develop tools to count the connected components of the fibers of a polynomial submersion in two real variables <span><math><mi>p</mi></math></span>. As a consequence, we get a necessary condition for a real number to be a bifurcation value of <span><math><mi>p</mi></math></span>. We further present new methods to verify that <span><math><mi>p</mi></math></span> has no Jacobian mates. These results are applied to prove that a polynomial local self-diffeomorphism of the real plane having one coordinate function with degree less than 6 is globally injective. As a byproduct, we completely classify the foliations defined by polynomial submersions of degree less than 6.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X24001640/pdfft?md5=b3a4aff57d2e2c1abcfc70f1614479b1&pid=1-s2.0-S0362546X24001640-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142076349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neumann problems for nonlinear elliptic equations with lower order terms 有低阶项的非线性椭圆方程的诺依曼问题
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-08-26 DOI: 10.1016/j.na.2024.113626
M.F. Betta , O. Guibé , A. Mercaldo
{"title":"Neumann problems for nonlinear elliptic equations with lower order terms","authors":"M.F. Betta ,&nbsp;O. Guibé ,&nbsp;A. Mercaldo","doi":"10.1016/j.na.2024.113626","DOIUrl":"10.1016/j.na.2024.113626","url":null,"abstract":"<div><p>In the present paper we prove existence results for solutions to nonlinear elliptic Neumann problems whose prototype is <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mi>λ</mi><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>u</mi><mo>−</mo><mo>div</mo><mrow><mo>(</mo><mi>c</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo></mrow><mo>+</mo><mi>b</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>∇</mo><mi>u</mi><mo>=</mo><mi>f</mi><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mfenced><mrow><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>∇</mo><mi>u</mi><mo>+</mo><mi>c</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi></mrow></mfenced><mi>⋅</mi><munder><mrow><mi>n</mi></mrow><mo>̲</mo></munder><mo>=</mo><mn>0</mn><mspace></mspace></mtd><mtd><mtext>on</mtext><mspace></mspace><mi>∂</mi><mi>Ω</mi><mspace></mspace></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mi>Ω</mi></math></span> is a bounded domain of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, <span><math><mrow><mi>N</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, with Lipschitz boundary, <span><math><mrow><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mi>N</mi></mrow></math></span> , <span><math><munder><mrow><mi>n</mi></mrow><mo>̲</mo></munder></math></span> is the outer unit normal to <span><math><mrow><mi>∂</mi><mi>Ω</mi></mrow></math></span>, <span><math><mrow><mi>λ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, the datum <span><math><mi>f</mi></math></span> belongs to the dual space of <span><math><mrow><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> or to Lebesgue space <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>. Finally the coefficients <span><math><mi>b</mi></math></span>, <span><math><mi>c</mi></math></span> belong to appropriate Lebesgue spaces or Lorentz spaces.</p><p>Existence results for weak solutions or renormalized solutions are proved under smallness assumptions on the coefficients <span><math><mi>b</mi></math></span> and <span><math><mi>c</mi></math></span>.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X24001457/pdfft?md5=ce03c34a8fe445e869b1bd2082487f52&pid=1-s2.0-S0362546X24001457-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142076602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coupled Elliptic systems with sublinear growth 具有亚线性增长的耦合椭圆系统
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-08-26 DOI: 10.1016/j.na.2024.113627
J. Arratia, P. Ubilla
{"title":"Coupled Elliptic systems with sublinear growth","authors":"J. Arratia,&nbsp;P. Ubilla","doi":"10.1016/j.na.2024.113627","DOIUrl":"10.1016/j.na.2024.113627","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Consider the coupled elliptic system &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;ρ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mtext&gt;in&lt;/mtext&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;ρ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mtext&gt;in&lt;/mtext&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mtext&gt;as&lt;/mtext&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;We observe that in 2008, A. Ambrosetti, G. Cerami and D. Ruiz proved the existence of positive bound and ground states in the case &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;ρ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;ρ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; tends to one at infinity. In this work we complement their result, because we show that the previous system has no solutions when &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, as well as we establish sharp hypotheses on the powers &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; the parameter &lt;span&gt;&lt;math&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and the weights &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;ρ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;ma","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X24001469/pdfft?md5=01ed59f01a98b70d3c1e8964544d608f&pid=1-s2.0-S0362546X24001469-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142076603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
k-convex hypersurfaces with prescribed Weingarten curvature in warped product manifolds 翘积流形中具有规定韦氏曲率的 k 凸超曲面
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-08-22 DOI: 10.1016/j.na.2024.113640
Xiaojuan Chen, Qiang Tu, Ni Xiang
{"title":"k-convex hypersurfaces with prescribed Weingarten curvature in warped product manifolds","authors":"Xiaojuan Chen,&nbsp;Qiang Tu,&nbsp;Ni Xiang","doi":"10.1016/j.na.2024.113640","DOIUrl":"10.1016/j.na.2024.113640","url":null,"abstract":"<div><p>In this paper, we consider Weingarten curvature equations for <span><math><mi>k</mi></math></span>-convex hypersurfaces with <span><math><mrow><mi>n</mi><mo>&lt;</mo><mn>2</mn><mi>k</mi></mrow></math></span> in a warped product manifold <span><math><mrow><mover><mrow><mi>M</mi></mrow><mo>¯</mo></mover><mo>=</mo><mi>I</mi><msub><mrow><mo>×</mo></mrow><mrow><mi>λ</mi></mrow></msub><mi>M</mi></mrow></math></span>. Based on the conjecture proposed by Ren–Wang in Ren and Wang (2020), which is valid for <span><math><mrow><mi>k</mi><mo>≥</mo><mi>n</mi><mo>−</mo><mn>2</mn></mrow></math></span>, we derive curvature estimates for equation <span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>κ</mi><mo>)</mo></mrow><mo>=</mo><mi>ψ</mi><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>ν</mi><mrow><mo>(</mo><mi>V</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> through a straightforward proof. Furthermore, we also obtain an existence result for the star-shaped compact hypersurface <span><math><mi>Σ</mi></math></span> satisfying the above equation by the degree theory under some sufficient conditions.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142039755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Renormalised energy between boundary vortices in thin-film micromagnetics with Dzyaloshinskii-Moriya interaction 具有 Dzyaloshinskii-Moriya 相互作用的薄膜微磁学中边界涡之间的重正化能量
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-08-21 DOI: 10.1016/j.na.2024.113622
Radu Ignat , François L’Official
{"title":"Renormalised energy between boundary vortices in thin-film micromagnetics with Dzyaloshinskii-Moriya interaction","authors":"Radu Ignat ,&nbsp;François L’Official","doi":"10.1016/j.na.2024.113622","DOIUrl":"10.1016/j.na.2024.113622","url":null,"abstract":"<div><p>We consider a three-dimensional micromagnetic model with Dzyaloshinskii-Moriya interaction in a thin-film regime for boundary vortices. In this regime, we prove a dimension reduction result: the nonlocal three-dimensional model reduces to a local two-dimensional Ginzburg–Landau type model in terms of the averaged magnetisation in the thickness of the film. This reduced model captures the interaction between boundary vortices (so-called renormalised energy), that we determine by a <span><math><mi>Γ</mi></math></span>-convergence result at the second order and then we analyse its minimisers. They nucleate two boundary vortices whose position depends on the Dzyaloshinskii-Moriya interaction.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X2400141X/pdfft?md5=909aaa9112d6eb58c619099b93d70d70&pid=1-s2.0-S0362546X2400141X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-constant functions with zero nonlocal gradient and their role in nonlocal Neumann-type problems 非局部梯度为零的非常数函数及其在非局部新曼类问题中的作用
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-08-20 DOI: 10.1016/j.na.2024.113642
Carolin Kreisbeck, Hidde Schönberger
{"title":"Non-constant functions with zero nonlocal gradient and their role in nonlocal Neumann-type problems","authors":"Carolin Kreisbeck,&nbsp;Hidde Schönberger","doi":"10.1016/j.na.2024.113642","DOIUrl":"10.1016/j.na.2024.113642","url":null,"abstract":"<div><p>This work revolves around properties and applications of functions whose nonlocal gradient, or more precisely, finite-horizon fractional gradient, vanishes. Surprisingly, in contrast to the classical local theory, we show that this class forms an infinite-dimensional vector space. Our main result characterizes the functions with zero nonlocal gradient in terms of two simple features, namely, their values in a layer around the boundary and their average. The proof exploits recent progress in the solution theory of boundary-value problems with pseudo-differential operators. We complement these findings with a discussion of the regularity properties of such functions and give illustrative examples. Regarding applications, we provide several useful technical tools for working with nonlocal Sobolev spaces when the common complementary-value conditions are dropped. Among these, are new nonlocal Poincaré inequalities and compactness statements, which are obtained after factoring out functions with vanishing nonlocal gradient. Following a variational approach, we exploit the previous findings to study a class of nonlocal partial differential equations subject to natural boundary conditions, in particular, nonlocal Neumann-type problems. Our analysis includes a proof of well-posedness and a rigorous link with their classical local counterparts via <span><math><mi>Γ</mi></math></span>-convergence as the fractional parameter tends to 1.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X24001615/pdfft?md5=553f4dd248401bdbae37ffd61c633f93&pid=1-s2.0-S0362546X24001615-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142011691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partial regularity for manifold constrained quasilinear elliptic systems 流形约束准线性椭圆系统的部分正则性
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-08-17 DOI: 10.1016/j.na.2024.113643
Esther Cabezas-Rivas , Salvador Moll , Vicent Pallardó-Julià
{"title":"Partial regularity for manifold constrained quasilinear elliptic systems","authors":"Esther Cabezas-Rivas ,&nbsp;Salvador Moll ,&nbsp;Vicent Pallardó-Julià","doi":"10.1016/j.na.2024.113643","DOIUrl":"10.1016/j.na.2024.113643","url":null,"abstract":"<div><p>We consider manifold constrained weak solutions of quasilinear uniformly elliptic systems of divergence type with a source term that grows at most quadratically with respect to the gradient of the solution. As we impose that the solution lies on a Riemannian manifold, the classical smallness condition for regularity can be relaxed to an inequality relating strict convexity of the squared distance and growth of the leading order term in the tangent component of the source. As a key tool for the proof of a partial regularity result, we derive a fully intrinsic Caccioppoli inequality which may be of independent interest. Finally we show how the systems under consideration have a variational nature and arise in the context of <span><math><mi>F</mi></math></span>- or <span><math><mi>V</mi></math></span>-harmonic maps.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X24001627/pdfft?md5=474491586a35eaf7075af1bd65557db2&pid=1-s2.0-S0362546X24001627-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141998381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sharp sub-Gaussian upper bounds for subsolutions of Trudinger’s equation on Riemannian manifolds 黎曼流形上特鲁丁格方程子解的尖锐亚高斯上界
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2024-08-13 DOI: 10.1016/j.na.2024.113641
Philipp Sürig
{"title":"Sharp sub-Gaussian upper bounds for subsolutions of Trudinger’s equation on Riemannian manifolds","authors":"Philipp Sürig","doi":"10.1016/j.na.2024.113641","DOIUrl":"10.1016/j.na.2024.113641","url":null,"abstract":"<div><p>We consider on Riemannian manifolds the nonlinear evolution equation <span><span><span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>=</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>1</mn><mo>/</mo><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>p</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span>. This equation is also known as a doubly non-linear parabolic equation or Trudinger’s equation. We prove that weak subsolutions of this equation have a sub-Gaussian upper bound and prove that this upper bound is sharp for a specific class of manifolds including <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X24001603/pdfft?md5=d58d3972144f1e8175ec28d9bd63d444&pid=1-s2.0-S0362546X24001603-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141979829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信