半空间中monge - ampantere方程解在无穷远处的高阶展开

IF 1.3 2区 数学 Q1 MATHEMATICS
Lichun Liang
{"title":"半空间中monge - ampantere方程解在无穷远处的高阶展开","authors":"Lichun Liang","doi":"10.1016/j.na.2025.113912","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the asymptotic behavior of viscosity solutions for Monge–Ampère equations in the half space with a Dirichlet boundary condition on the flat boundary. Via the Kelvin transform, we characterize the asymptotic remainders by a single function near the origin. Such a function is smooth in the neighborhood of the origin in even dimension, but only <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> <span><math><mrow><mo>(</mo><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn><mo>)</mo></mrow></math></span> in odd dimension.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113912"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher order expansion at infinity of solutions for Monge–Ampère equations in the half space\",\"authors\":\"Lichun Liang\",\"doi\":\"10.1016/j.na.2025.113912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate the asymptotic behavior of viscosity solutions for Monge–Ampère equations in the half space with a Dirichlet boundary condition on the flat boundary. Via the Kelvin transform, we characterize the asymptotic remainders by a single function near the origin. Such a function is smooth in the neighborhood of the origin in even dimension, but only <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>α</mi></mrow></msup></math></span> <span><math><mrow><mo>(</mo><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn><mo>)</mo></mrow></math></span> in odd dimension.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"262 \",\"pages\":\"Article 113912\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X2500166X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X2500166X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了平面边界上具有Dirichlet边界条件的半空间中monge - ampatire方程黏性解的渐近性质。通过开尔文变换,我们用原点附近的一个函数来描述渐近余数。该函数在偶维上在原点附近是光滑的,但在奇维上只有Cn−1,α (0<α<1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher order expansion at infinity of solutions for Monge–Ampère equations in the half space
In this paper, we investigate the asymptotic behavior of viscosity solutions for Monge–Ampère equations in the half space with a Dirichlet boundary condition on the flat boundary. Via the Kelvin transform, we characterize the asymptotic remainders by a single function near the origin. Such a function is smooth in the neighborhood of the origin in even dimension, but only Cn1,α (0<α<1) in odd dimension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信