局部一维电流的叠加原理

IF 1.3 2区 数学 Q1 MATHEMATICS
L. Ambrosio, F. Renzi, F. Vitillaro
{"title":"局部一维电流的叠加原理","authors":"L. Ambrosio,&nbsp;F. Renzi,&nbsp;F. Vitillaro","doi":"10.1016/j.na.2025.113913","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that every one-dimensional locally normal metric current, intended in the sense of U. Lang and S. Wenger, admits a nice integral representation through currents associated to (possibly unbounded) curves with locally finite length, generalizing the result shown by E. Paolini and E. Stepanov in the special case of Ambrosio–Kirchheim normal currents. Our result holds in Polish spaces, or more generally in complete metric spaces for 1-currents with tight support.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113913"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The superposition principle for local 1-dimensional currents\",\"authors\":\"L. Ambrosio,&nbsp;F. Renzi,&nbsp;F. Vitillaro\",\"doi\":\"10.1016/j.na.2025.113913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove that every one-dimensional locally normal metric current, intended in the sense of U. Lang and S. Wenger, admits a nice integral representation through currents associated to (possibly unbounded) curves with locally finite length, generalizing the result shown by E. Paolini and E. Stepanov in the special case of Ambrosio–Kirchheim normal currents. Our result holds in Polish spaces, or more generally in complete metric spaces for 1-currents with tight support.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"262 \",\"pages\":\"Article 113913\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001671\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001671","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了每一个一维局部法向度量电流,在Lang和Wenger的意义上,通过与局部有限长度曲线相关的电流(可能是无界的)可以得到一个很好的积分表示,推广了E. Paolini和E. Stepanov在Ambrosio-Kirchheim法向电流的特殊情况下所得到的结果。我们的结果在波兰空间中成立,或者更一般地说,在具有紧支撑的1-电流的完备度量空间中成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The superposition principle for local 1-dimensional currents
We prove that every one-dimensional locally normal metric current, intended in the sense of U. Lang and S. Wenger, admits a nice integral representation through currents associated to (possibly unbounded) curves with locally finite length, generalizing the result shown by E. Paolini and E. Stepanov in the special case of Ambrosio–Kirchheim normal currents. Our result holds in Polish spaces, or more generally in complete metric spaces for 1-currents with tight support.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信