{"title":"Fefferman–Stein type decomposition of CMO spaces in the Dunkl setting and an application","authors":"Qingdong Guo , Ji Li , Brett D. Wick","doi":"10.1016/j.na.2025.113916","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we establish the Fefferman–Stein type decomposition of the <span><math><mi>CMO</mi></math></span> space in the Dunkl setting. That is <span><math><mrow><mi>f</mi><mo>∈</mo><mi>CMO</mi><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><mi>d</mi><mi>ω</mi><mo>)</mo></mrow></mrow></math></span> if and only if <span><span><span><math><mrow><mi>f</mi><mo>=</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>+</mo><munderover><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>d</mi></mrow></munderover><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>j</mi></mrow></msub><msub><mrow><mi>f</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><msub><mrow><mover><mrow><mi>R</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mi>j</mi></mrow></msub></math></span>, <span><math><mrow><mi>j</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>d</mi></mrow></math></span>, represent the Dunkl–Riesz transforms. Our main tool is to characterize <span><math><mrow><mi>CMO</mi><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><mi>d</mi><mi>ω</mi><mo>)</mo></mrow></mrow></math></span> via two approximations, which are new even for the classical space <span><math><mrow><mi>CMO</mi><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>. As a direct application of our characterization of <span><math><mrow><mi>CMO</mi><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><mi>d</mi><mi>ω</mi><mo>)</mo></mrow></mrow></math></span>, we prove the duality of <span><math><mrow><mi>CMO</mi><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><mi>d</mi><mi>ω</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>,</mo><mi>d</mi><mi>ω</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113916"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001701","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we establish the Fefferman–Stein type decomposition of the space in the Dunkl setting. That is if and only if where and , , represent the Dunkl–Riesz transforms. Our main tool is to characterize via two approximations, which are new even for the classical space . As a direct application of our characterization of , we prove the duality of with .
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.