Nonlinear Analysis-Theory Methods & Applications最新文献

筛选
英文 中文
De Leeuw representations of functionals on Lipschitz spaces 李普希茨空间上泛函的德列表示
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-06-04 DOI: 10.1016/j.na.2025.113851
Ramón J. Aliaga , Eva Pernecká , Richard J. Smith
{"title":"De Leeuw representations of functionals on Lipschitz spaces","authors":"Ramón J. Aliaga , Eva Pernecká , Richard J. Smith","doi":"10.1016/j.na.2025.113851","DOIUrl":"10.1016/j.na.2025.113851","url":null,"abstract":"<div><div>Let <span><math><mrow><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> be the space of Lipschitz functions on a complete metric space <span><math><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></math></span> that vanish at a point <span><math><mrow><mn>0</mn><mo>∈</mo><mi>M</mi></mrow></math></span>. We investigate its dual <span><math><mrow><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> using the De Leeuw transform, which allows representing each functional on <span><math><mrow><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> as a (non-unique) measure on <span><math><mrow><mi>β</mi><mover><mrow><mi>M</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow></math></span>, where <span><math><mover><mrow><mi>M</mi></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is the space of pairs <span><math><mrow><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><mi>M</mi><mo>×</mo><mi>M</mi></mrow></math></span>, <span><math><mrow><mi>x</mi><mo>≠</mo><mi>y</mi></mrow></math></span>. We distinguish a set of points of <span><math><mrow><mi>β</mi><mover><mrow><mi>M</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow></math></span> that are “away from infinity”, which can be assigned coordinates belonging to the Lipschitz realcompactification <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>R</mi></mrow></msup></math></span> of <span><math><mi>M</mi></math></span>. We define a natural metric <span><math><mover><mrow><mi>d</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span> on <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>R</mi></mrow></msup></math></span> extending <span><math><mi>d</mi></math></span> and we show that optimal (i.e. positive and norm-minimal) De Leeuw representations of well-behaved functionals are characterised by <span><math><mover><mrow><mi>d</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span>-cyclical monotonicity of their support, extending known results for functionals in <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span>, the predual of <span><math><mrow><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span>. We also extend the Kantorovich–Rubinstein theorem to normal Hausdorff spaces, in particular to <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>R</mi></mrow></msup></math></span>, and use this to characterise measure-induced and majorisable functionals in <span><math><mrow><msub><mrow><mi>Lip</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span> as those admitting optimal representations ","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"260 ","pages":"Article 113851"},"PeriodicalIF":1.3,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144205303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BMO estimates for Hodge–Maxwell systems with discontinuous anisotropic coefficients 具有不连续各向异性系数的Hodge-Maxwell系统的BMO估计
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-06-03 DOI: 10.1016/j.na.2025.113852
Dharmendra Kumar , Swarnendu Sil
{"title":"BMO estimates for Hodge–Maxwell systems with discontinuous anisotropic coefficients","authors":"Dharmendra Kumar ,&nbsp;Swarnendu Sil","doi":"10.1016/j.na.2025.113852","DOIUrl":"10.1016/j.na.2025.113852","url":null,"abstract":"<div><div>We prove up to the boundary <span><math><mi>BMO</mi></math></span> estimates for linear Maxwell–Hodge type systems for <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>-valued differential <span><math><mi>k</mi></math></span>-forms <span><math><mi>u</mi></math></span> in <span><math><mi>n</mi></math></span> dimensions <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msup><mrow><mi>d</mi></mrow><mrow><mo>∗</mo></mrow></msup><mfenced><mrow><mi>A</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>d</mi><mi>u</mi></mrow></mfenced></mtd><mtd><mo>=</mo><mi>f</mi></mtd><mtd></mtd><mtd><mtext>in</mtext><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><msup><mrow><mi>d</mi></mrow><mrow><mo>∗</mo></mrow></msup><mfenced><mrow><mi>B</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>u</mi></mrow></mfenced></mtd><mtd><mo>=</mo><mi>g</mi></mtd><mtd></mtd><mtd><mtext>in</mtext><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>with <span><math><mrow><mi>ν</mi><mo>∧</mo><mi>u</mi></mrow></math></span> prescribed on <span><math><mrow><mi>∂</mi><mi>Ω</mi><mo>,</mo></mrow></math></span> where the coefficient tensors <span><math><mrow><mi>A</mi><mo>,</mo><mi>B</mi></mrow></math></span> are only required to be bounded measurable and in a class of ‘small multipliers of BMO’. This class neither contains nor is contained in <span><math><mrow><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>.</mo></mrow></math></span> Since the coefficients are allowed to be discontinuous, the usual Korn’s freezing trick cannot be applied. As an application, we show BMO estimates hold for the time-harmonic Maxwell system in dimension three for a class of discontinuous anisotropic permeability and permittivity tensors. The regularity assumption on the coefficient is essentially sharp.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"260 ","pages":"Article 113852"},"PeriodicalIF":1.3,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144194481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlocal approximation of an anisotropic cross-diffusion system 各向异性交叉扩散系统的非局部近似
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-06-02 DOI: 10.1016/j.na.2025.113835
Tomasz Dębiec , Markus Schmidtchen
{"title":"Nonlocal approximation of an anisotropic cross-diffusion system","authors":"Tomasz Dębiec ,&nbsp;Markus Schmidtchen","doi":"10.1016/j.na.2025.113835","DOIUrl":"10.1016/j.na.2025.113835","url":null,"abstract":"<div><div>Localisation limits and nonlocal approximations of degenerate parabolic systems have experienced a renaissance in recent years. However, only few results cover anisotropic systems. This work addresses this gap by establishing the nonlocal-to-limit for a specific anisotropic cross-diffusion system encountered in population dynamics featuring phase-separation phenomena, i.e., internal layers between different species. A critical element of the proof is an entropy dissipation identity, which we show to hold for any weak solution.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"260 ","pages":"Article 113835"},"PeriodicalIF":1.3,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144194480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemotaxis-consumption interaction: Solvability and asymptotics in general high-dimensional domains 趋化-消耗相互作用:一般高维域的可解性和渐近性
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-05-30 DOI: 10.1016/j.na.2025.113853
Johannes Lankeit , Michael Winkler
{"title":"Chemotaxis-consumption interaction: Solvability and asymptotics in general high-dimensional domains","authors":"Johannes Lankeit ,&nbsp;Michael Winkler","doi":"10.1016/j.na.2025.113853","DOIUrl":"10.1016/j.na.2025.113853","url":null,"abstract":"<div><div>The basic chemotaxis-consumption model <span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>u</mi><mi>v</mi></mtd></mtr></mtable></mrow></mfenced></math></span> is considered in general, possibly non-convex bounded domains of arbitrary spatial dimension. Global existence of weak solutions is shown, along with eventual smoothness of solutions and their stabilization in the large time limit.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"260 ","pages":"Article 113853"},"PeriodicalIF":1.3,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144178693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monge–Ampère equations with right-hand sides of polynomial growth 右手边是多项式生长的monge - ampantere方程
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-05-28 DOI: 10.1016/j.na.2025.113849
Beomjun Choi , Kyeongsu Choi , Soojung Kim
{"title":"Monge–Ampère equations with right-hand sides of polynomial growth","authors":"Beomjun Choi ,&nbsp;Kyeongsu Choi ,&nbsp;Soojung Kim","doi":"10.1016/j.na.2025.113849","DOIUrl":"10.1016/j.na.2025.113849","url":null,"abstract":"<div><div>We study the regularity and the growth rates of solutions to two-dimensional Monge–Ampère equations with the right-hand side exhibiting polynomial growth. Utilizing this analysis, we demonstrate that the translators for the flow by sub-affine-critical powers of the Gauss curvature are smooth, strictly convex entire graphs. These graphs exhibit specific growth rates that depend solely on the power of the flow.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"260 ","pages":"Article 113849"},"PeriodicalIF":1.3,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144154433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triviality of k-Yamabe gradient solitons immersed in certain warped product spaces k-Yamabe梯度孤子在翘曲积空间中的平凡性
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-05-19 DOI: 10.1016/j.na.2025.113848
Henrique F. de Lima, Ary V.F. Leite, Marco A.L. Velásquez
{"title":"Triviality of k-Yamabe gradient solitons immersed in certain warped product spaces","authors":"Henrique F. de Lima,&nbsp;Ary V.F. Leite,&nbsp;Marco A.L. Velásquez","doi":"10.1016/j.na.2025.113848","DOIUrl":"10.1016/j.na.2025.113848","url":null,"abstract":"<div><div>We deal with complete noncompact and stochastically complete <span><math><mi>k</mi></math></span>-Yamabe gradient solitons immersed in a warped product space obeying a suitable curvature constraint. In this context, we establish a necessary and sufficient condition for a Riemannian manifold immersed in a warped product to be a <span><math><mi>k</mi></math></span>-Yamabe gradient soliton, under the hypothesis that the potential function agrees with the height function. Proceeding with this setting, we use a suitable Bochner type formula jointly with integrability conditions and some maximum principles dealing, in particular, with the notions of convergence to zero at infinity and polynomial volume growth, to obtain new triviality results concerning <span><math><mi>k</mi></math></span>-Yamabe gradient solitons. Moreover, we present some applications of our main results to a class of pseudo-hyperbolic spaces.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"260 ","pages":"Article 113848"},"PeriodicalIF":1.3,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144090517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Normalized solutions to Schrödinger systems with critical nonlinearities 临界非线性Schrödinger系统的归一化解
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-05-19 DOI: 10.1016/j.na.2025.113845
Yuxi Meng , Xiaoming He , Patrick Winkert
{"title":"Normalized solutions to Schrödinger systems with critical nonlinearities","authors":"Yuxi Meng ,&nbsp;Xiaoming He ,&nbsp;Patrick Winkert","doi":"10.1016/j.na.2025.113845","DOIUrl":"10.1016/j.na.2025.113845","url":null,"abstract":"&lt;div&gt;&lt;div&gt;We consider a system of coupled Schrödinger equations involving critical exponent given by &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mtext&gt;in&lt;/mtext&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;λ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mtext&gt;in&lt;/mtext&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;We study the existence of positive ground state solutions having prescribed mass &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;∫&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mtext&gt;and&lt;/mtext&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;∫&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;m","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"260 ","pages":"Article 113845"},"PeriodicalIF":1.3,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144090518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vanishing results on weighted manifolds with lower bounds of the curvature operator 曲率算子下界加权流形上的消失结果
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-05-17 DOI: 10.1016/j.na.2025.113847
Nguyen Thac Dung , Juncheol Pyo , Nguyen Dang Tuyen
{"title":"Vanishing results on weighted manifolds with lower bounds of the curvature operator","authors":"Nguyen Thac Dung ,&nbsp;Juncheol Pyo ,&nbsp;Nguyen Dang Tuyen","doi":"10.1016/j.na.2025.113847","DOIUrl":"10.1016/j.na.2025.113847","url":null,"abstract":"<div><div>In this paper, we apply a new Bochner technique introduced in the recent work by Petersen and Wink to investigate vanishing properties of <span><math><mi>p</mi></math></span>-harmonic <span><math><mi>ℓ</mi></math></span>-forms on Riemannian manifolds. Assuming that <span><math><mi>M</mi></math></span> is a complete, noncompact <span><math><mi>n</mi></math></span>-dimensional manifold with an <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>ℓ</mi><mo>)</mo></mrow></math></span>-positive curvature operator, we demonstrate that any <span><math><mi>p</mi></math></span>-harmonic <span><math><mi>ℓ</mi></math></span>-forms on <span><math><mi>M</mi></math></span> with finite <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span>-energy must be trivial. To establish this result, we consider a general framework for a complete noncompact weighted Riemannian manifold <span><math><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>,</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>f</mi></mrow></msup><mi>d</mi><mi>μ</mi><mo>)</mo></mrow></math></span> where the weighted curvature operator is bounded from below. By assuming the validity of a Sobolev inequality on <span><math><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>g</mi><mo>,</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>f</mi></mrow></msup><mi>d</mi><mi>μ</mi><mo>)</mo></mrow></math></span>, we apply the Moser iteration technique to estimate the sup-norm of forms and verify their vanishing properties.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"260 ","pages":"Article 113847"},"PeriodicalIF":1.3,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144072351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A priori estimates for Singularities of the Lagrangian Mean Curvature Flow with supercritical phase 超临界相拉格朗日平均曲率流奇异性的先验估计
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-05-13 DOI: 10.1016/j.na.2025.113844
Arunima Bhattacharya, Jeremy Wall
{"title":"A priori estimates for Singularities of the Lagrangian Mean Curvature Flow with supercritical phase","authors":"Arunima Bhattacharya,&nbsp;Jeremy Wall","doi":"10.1016/j.na.2025.113844","DOIUrl":"10.1016/j.na.2025.113844","url":null,"abstract":"<div><div>In this paper, we prove interior a priori estimates for singularities of the Lagrangian mean curvature flow assuming the Lagrangian phase is supercritical. We prove a Jacobi inequality that holds good when the Lagrangian phase is critical and supercritical. We further extend our results to a broader class of Lagrangian mean curvature type equations.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"259 ","pages":"Article 113844"},"PeriodicalIF":1.3,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143934903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence results for some elliptic problems in RN including variable exponents above the critical growth 一类具有临界增长以上变指数的椭圆型问题的存在性结果
IF 1.3 2区 数学
Nonlinear Analysis-Theory Methods & Applications Pub Date : 2025-05-09 DOI: 10.1016/j.na.2025.113831
Yane Araújo , Eudes Barboza , José Carlos de Albuquerque , Pedro Ubilla
{"title":"Existence results for some elliptic problems in RN including variable exponents above the critical growth","authors":"Yane Araújo ,&nbsp;Eudes Barboza ,&nbsp;José Carlos de Albuquerque ,&nbsp;Pedro Ubilla","doi":"10.1016/j.na.2025.113831","DOIUrl":"10.1016/j.na.2025.113831","url":null,"abstract":"<div><div>We establish existence results for the following class of equations involving variable exponents <span><span><span><math><mrow><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>u</mi><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mrow><mo>(</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mi>λ</mi><msup><mrow><mrow><mo>|</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow><mrow><mi>q</mi><mrow><mo>(</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>λ</mi><mo>≥</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>N</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>p</mi><mo>,</mo><mi>q</mi><mo>:</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mi>∞</mi><mo>)</mo></mrow><mo>→</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mo>+</mo><mi>∞</mi><mo>)</mo></mrow></mrow></math></span> are radial continuous functions which satisfy suitable conditions. For this purpose, it is sufficient to consider either subcriticality or criticality within a small region near the origin. Surprisingly, outside this region, the nonlinearity may oscillate between subcritical, critical, and supercritical growth in the Sobolev sense. Our approach enables the use of the variational methods to tackle problems with variable exponents in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> without imposing restrictions outside of a neighborhood of zero.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"259 ","pages":"Article 113831"},"PeriodicalIF":1.3,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143927393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信