关于任何环流中具有多个碰撞极点的Aharonov-Bohm算子

IF 1.3 2区 数学 Q1 MATHEMATICS
Veronica Felli , Benedetta Noris , Giovanni Siclari
{"title":"关于任何环流中具有多个碰撞极点的Aharonov-Bohm算子","authors":"Veronica Felli ,&nbsp;Benedetta Noris ,&nbsp;Giovanni Siclari","doi":"10.1016/j.na.2025.113813","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with quantitative spectral stability for Aharonov-Bohm operators with many colliding poles of whichever circulation. An equivalent formulation of the eigenvalue problem is derived as a system of two equations with real coefficients, coupled through prescribed jumps of the unknowns and their normal derivatives across the segments joining the poles with the collision point. Under the assumption that the sum of all circulations is not integer, the dominant term in the asymptotic expansion for eigenvalues is characterized in terms of the minimum of an energy functional associated with the configuration of poles. Estimates of the order of vanishing of the eigenvalue variation are then deduced from a blow-up analysis, yielding sharp asymptotics in some particular examples.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"258 ","pages":"Article 113813"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Aharonov-Bohm operators with multiple colliding poles of any circulation\",\"authors\":\"Veronica Felli ,&nbsp;Benedetta Noris ,&nbsp;Giovanni Siclari\",\"doi\":\"10.1016/j.na.2025.113813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper deals with quantitative spectral stability for Aharonov-Bohm operators with many colliding poles of whichever circulation. An equivalent formulation of the eigenvalue problem is derived as a system of two equations with real coefficients, coupled through prescribed jumps of the unknowns and their normal derivatives across the segments joining the poles with the collision point. Under the assumption that the sum of all circulations is not integer, the dominant term in the asymptotic expansion for eigenvalues is characterized in terms of the minimum of an energy functional associated with the configuration of poles. Estimates of the order of vanishing of the eigenvalue variation are then deduced from a blow-up analysis, yielding sharp asymptotics in some particular examples.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"258 \",\"pages\":\"Article 113813\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25000677\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25000677","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了任意环流中具有多个碰撞极的Aharonov-Bohm算符的定量谱稳定性。本征值问题的等效公式推导为两个实系数方程的系统,通过规定的未知量和它们的法向导数在连接极点和碰撞点的段上的跳跃来耦合。在所有循环的和不是整数的假设下,特征值渐近展开式中的主导项用与极点构型相关的能量泛函的最小值来表示。然后从放大分析中推导出特征值变化的消失阶数的估计,在一些特定的例子中得到明显的渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Aharonov-Bohm operators with multiple colliding poles of any circulation
This paper deals with quantitative spectral stability for Aharonov-Bohm operators with many colliding poles of whichever circulation. An equivalent formulation of the eigenvalue problem is derived as a system of two equations with real coefficients, coupled through prescribed jumps of the unknowns and their normal derivatives across the segments joining the poles with the collision point. Under the assumption that the sum of all circulations is not integer, the dominant term in the asymptotic expansion for eigenvalues is characterized in terms of the minimum of an energy functional associated with the configuration of poles. Estimates of the order of vanishing of the eigenvalue variation are then deduced from a blow-up analysis, yielding sharp asymptotics in some particular examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信