无粘总变分的最小值的H1规则性和H1数据的Bingham流体问题

IF 1.3 2区 数学 Q1 MATHEMATICS
François Bouchut , Carsten Carstensen , Alexandre Ern
{"title":"无粘总变分的最小值的H1规则性和H1数据的Bingham流体问题","authors":"François Bouchut ,&nbsp;Carsten Carstensen ,&nbsp;Alexandre Ern","doi":"10.1016/j.na.2025.113809","DOIUrl":null,"url":null,"abstract":"<div><div>The Bingham fluid model for viscoplastic materials involves the minimization of a nondifferentiable functional. The regularity of the associated solution is investigated here. The simplified scalar case is considered first: the total variation minimization problem. Our main result proves for a convex domain <span><math><mi>Ω</mi></math></span> that a right-hand side <span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> gives a solution <span><math><mrow><mi>u</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>. Homogeneous Dirichlet conditions involve an additional trace term, then <span><math><mrow><mi>f</mi><mo>∈</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> implies <span><math><mrow><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>. In the case of the inviscid vector Bingham fluid model, boundary conditions are difficult to handle, but we prove the local <span><math><mrow><msubsup><mrow><mi>H</mi></mrow><mrow><mtext>loc</mtext></mrow><mrow><mn>1</mn></mrow></msubsup><msup><mrow><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> regularity of the solution for <span><math><mrow><mi>f</mi><mo>∈</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mtext>loc</mtext></mrow><mrow><mn>1</mn></mrow></msubsup><msup><mrow><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span>. The proofs rely on several generalizations of a lemma due to Brézis and on the viscous approximation. We obtain Euler–Lagrange characterizations of the solution. Homogeneous Dirichlet conditions on the viscous problem lead in the vanishing viscosity limit to relaxed boundary conditions of frictional type.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"258 ","pages":"Article 113809"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"H1 regularity of the minimizers for the inviscid total variation and Bingham fluid problems for H1 data\",\"authors\":\"François Bouchut ,&nbsp;Carsten Carstensen ,&nbsp;Alexandre Ern\",\"doi\":\"10.1016/j.na.2025.113809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Bingham fluid model for viscoplastic materials involves the minimization of a nondifferentiable functional. The regularity of the associated solution is investigated here. The simplified scalar case is considered first: the total variation minimization problem. Our main result proves for a convex domain <span><math><mi>Ω</mi></math></span> that a right-hand side <span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> gives a solution <span><math><mrow><mi>u</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>. Homogeneous Dirichlet conditions involve an additional trace term, then <span><math><mrow><mi>f</mi><mo>∈</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> implies <span><math><mrow><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>. In the case of the inviscid vector Bingham fluid model, boundary conditions are difficult to handle, but we prove the local <span><math><mrow><msubsup><mrow><mi>H</mi></mrow><mrow><mtext>loc</mtext></mrow><mrow><mn>1</mn></mrow></msubsup><msup><mrow><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> regularity of the solution for <span><math><mrow><mi>f</mi><mo>∈</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mtext>loc</mtext></mrow><mrow><mn>1</mn></mrow></msubsup><msup><mrow><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span>. The proofs rely on several generalizations of a lemma due to Brézis and on the viscous approximation. We obtain Euler–Lagrange characterizations of the solution. Homogeneous Dirichlet conditions on the viscous problem lead in the vanishing viscosity limit to relaxed boundary conditions of frictional type.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"258 \",\"pages\":\"Article 113809\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X2500063X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X2500063X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

粘塑性材料的Bingham流体模型涉及到一个不可微泛函的最小化。本文研究了关联解的规律性。首先考虑简化的标量情况:总变差最小化问题。我们的主要结果证明了对于一个凸域Ω,右边的f∈H1(Ω)给出了一个解u∈H1(Ω)。齐次狄利克雷条件包含一个附加的迹项,则f∈H01(Ω)意味着u∈H01(Ω)。对于无粘矢量Bingham流体模型,边界条件难以处理,但我们证明了f∈Hloc1(Ω)n解的局部Hloc1(Ω)n的正则性。这些证明依赖于一个引理的几个推广和粘滞近似。我们得到了解的欧拉-拉格朗日表征。黏性问题的齐次狄利克雷条件导致黏性极限消失为摩擦型松弛边界条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
H1 regularity of the minimizers for the inviscid total variation and Bingham fluid problems for H1 data
The Bingham fluid model for viscoplastic materials involves the minimization of a nondifferentiable functional. The regularity of the associated solution is investigated here. The simplified scalar case is considered first: the total variation minimization problem. Our main result proves for a convex domain Ω that a right-hand side fH1(Ω) gives a solution uH1(Ω). Homogeneous Dirichlet conditions involve an additional trace term, then fH01(Ω) implies uH01(Ω). In the case of the inviscid vector Bingham fluid model, boundary conditions are difficult to handle, but we prove the local Hloc1(Ω)n regularity of the solution for fHloc1(Ω)n. The proofs rely on several generalizations of a lemma due to Brézis and on the viscous approximation. We obtain Euler–Lagrange characterizations of the solution. Homogeneous Dirichlet conditions on the viscous problem lead in the vanishing viscosity limit to relaxed boundary conditions of frictional type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信