Behaviour at infinity for solutions of a mixed nonlinear elliptic boundary value problem via inversion

IF 1.3 2区 数学 Q1 MATHEMATICS
Jana Björn , Abubakar Mwasa
{"title":"Behaviour at infinity for solutions of a mixed nonlinear elliptic boundary value problem via inversion","authors":"Jana Björn ,&nbsp;Abubakar Mwasa","doi":"10.1016/j.na.2025.113816","DOIUrl":null,"url":null,"abstract":"<div><div>We study a mixed boundary value problem for the quasilinear elliptic equation <span><math><mrow><mo>div</mo><mi>A</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mo>∇</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span> in an open infinite circular half-cylinder with prescribed continuous Dirichlet data on a part of the boundary and zero conormal derivative on the rest. The equation is assumed to satisfy the standard ellipticity conditions with a parameter <span><math><mrow><mi>p</mi><mo>&gt;</mo><mn>1</mn></mrow></math></span>. We prove the existence and uniqueness of bounded weak solutions to the mixed problem and characterize the regularity of the point at infinity in terms of <span><math><mi>p</mi></math></span>-capacities. For solutions with only Neumann data near the point at infinity we show that they behave in exactly one of three possible ways, similar to the alternatives in the Phragmén–Lindelöf principle.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"258 ","pages":"Article 113816"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25000707","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study a mixed boundary value problem for the quasilinear elliptic equation divA(x,u(x))=0 in an open infinite circular half-cylinder with prescribed continuous Dirichlet data on a part of the boundary and zero conormal derivative on the rest. The equation is assumed to satisfy the standard ellipticity conditions with a parameter p>1. We prove the existence and uniqueness of bounded weak solutions to the mixed problem and characterize the regularity of the point at infinity in terms of p-capacities. For solutions with only Neumann data near the point at infinity we show that they behave in exactly one of three possible ways, similar to the alternatives in the Phragmén–Lindelöf principle.
混合非线性椭圆型边值问题无穷远解的反演行为
研究了一个半开半圆柱上拟线性椭圆方程divA(x,∇u(x))=0的混合边值问题,该方程部分边界上有规定的连续Dirichlet数据,其余部分为零法向导数。假设方程满足标准椭圆性条件,参数为p>;1。证明了混合问题有界弱解的存在唯一性,用p-容量刻画了无穷远处点的正则性。对于在无穷远处只有诺依曼数据的解,我们证明了它们的行为恰好是三种可能方式中的一种,类似于Phragmén-Lindelöf原理中的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信