外域上具有临界增长的非线性椭圆方程正解的存在性

IF 1.3 2区 数学 Q1 MATHEMATICS
Ting-Ting Dai, Zeng-Qi Ou, Chun-Lei Tang, Ying Lv
{"title":"外域上具有临界增长的非线性椭圆方程正解的存在性","authors":"Ting-Ting Dai,&nbsp;Zeng-Qi Ou,&nbsp;Chun-Lei Tang,&nbsp;Ying Lv","doi":"10.1016/j.na.2025.113911","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we prove the existence of solutions for nonlinear elliptic equation with critical growth <span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup><mi>u</mi><mo>+</mo><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>u</mi><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi>u</mi><mo>=</mo><mn>0</mn></mtd><mtd><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span> where <span><math><mrow><mi>s</mi><mo>∈</mo><mrow><mo>(</mo></mrow><mn>0</mn><mo>,</mo><mn>1</mn><mrow><mo>]</mo></mrow><mo>,</mo><mi>N</mi><mo>&gt;</mo><mn>2</mn><mi>s</mi></mrow></math></span>, and <span><math><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>=</mo><mfrac><mrow><mn>2</mn><mi>N</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn><mi>s</mi></mrow></mfrac></mrow></math></span> is the critical Sobolev exponent. Here, <span><math><mrow><mi>V</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mfrac><mrow><mi>N</mi></mrow><mrow><mn>2</mn><mi>s</mi></mrow></mfrac></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> is a given nonnegative potential, <span><math><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup></math></span> denotes the fractional Laplace operator, <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> is an exterior domain with smooth boundary <span><math><mrow><mi>∂</mi><mi>Ω</mi><mo>≠</mo><mo>0̸</mo></mrow></math></span> such that <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mi>Ω</mi></mrow></math></span> non-empty and bounded. Using barycentric functions and the minimax method, we establish the existence of a positive solution <span><math><mrow><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi><mo>,</mo><mn>2</mn></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> under the assumption that <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mi>Ω</mi></mrow></math></span> is contained in a sufficiently small ball.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113911"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of positive solutions for nonlinear elliptic equations with critical growth on exterior domains\",\"authors\":\"Ting-Ting Dai,&nbsp;Zeng-Qi Ou,&nbsp;Chun-Lei Tang,&nbsp;Ying Lv\",\"doi\":\"10.1016/j.na.2025.113911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we prove the existence of solutions for nonlinear elliptic equation with critical growth <span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup><mi>u</mi><mo>+</mo><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>u</mi><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi>u</mi><mo>=</mo><mn>0</mn></mtd><mtd><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span> where <span><math><mrow><mi>s</mi><mo>∈</mo><mrow><mo>(</mo></mrow><mn>0</mn><mo>,</mo><mn>1</mn><mrow><mo>]</mo></mrow><mo>,</mo><mi>N</mi><mo>&gt;</mo><mn>2</mn><mi>s</mi></mrow></math></span>, and <span><math><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>=</mo><mfrac><mrow><mn>2</mn><mi>N</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn><mi>s</mi></mrow></mfrac></mrow></math></span> is the critical Sobolev exponent. Here, <span><math><mrow><mi>V</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mfrac><mrow><mi>N</mi></mrow><mrow><mn>2</mn><mi>s</mi></mrow></mfrac></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> is a given nonnegative potential, <span><math><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup></math></span> denotes the fractional Laplace operator, <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> is an exterior domain with smooth boundary <span><math><mrow><mi>∂</mi><mi>Ω</mi><mo>≠</mo><mo>0̸</mo></mrow></math></span> such that <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mi>Ω</mi></mrow></math></span> non-empty and bounded. Using barycentric functions and the minimax method, we establish the existence of a positive solution <span><math><mrow><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi><mo>,</mo><mn>2</mn></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> under the assumption that <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mi>Ω</mi></mrow></math></span> is contained in a sufficiently small ball.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"262 \",\"pages\":\"Article 113911\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001658\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001658","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了一类具有临界生长(−Δ)su+V(x)u=|u|2s∗−2uinΩ,u=0RN∈Ω的非线性椭圆型方程解的存在性,其中s∈(0,1),N>2s,且2s∗=2NN−2s是临界Sobolev指数。这里,V∈LN2s(Ω)是一个给定的非负电位,(−Δ)s表示分数阶拉普拉斯算子,Ω RN是一个光滑边界∂Ω≠0的外域,使得RN∈Ω非空且有界。利用质心函数和极大极小法,在假设RN∈Ω包含在一个足够小的球内的条件下,建立了一个正解u∈D0s,2(Ω)的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of positive solutions for nonlinear elliptic equations with critical growth on exterior domains
In this paper, we prove the existence of solutions for nonlinear elliptic equation with critical growth (Δ)su+V(x)u=|u|2s2uinΩ,u=0RNΩ, where s(0,1],N>2s, and 2s=2NN2s is the critical Sobolev exponent. Here, VLN2s(Ω) is a given nonnegative potential, (Δ)s denotes the fractional Laplace operator, ΩRN is an exterior domain with smooth boundary Ω such that RNΩ non-empty and bounded. Using barycentric functions and the minimax method, we establish the existence of a positive solution uD0s,2(Ω) under the assumption that RNΩ is contained in a sufficiently small ball.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信