{"title":"外域上具有临界增长的非线性椭圆方程正解的存在性","authors":"Ting-Ting Dai, Zeng-Qi Ou, Chun-Lei Tang, Ying Lv","doi":"10.1016/j.na.2025.113911","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we prove the existence of solutions for nonlinear elliptic equation with critical growth <span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup><mi>u</mi><mo>+</mo><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>u</mi><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi>u</mi><mo>=</mo><mn>0</mn></mtd><mtd><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span> where <span><math><mrow><mi>s</mi><mo>∈</mo><mrow><mo>(</mo></mrow><mn>0</mn><mo>,</mo><mn>1</mn><mrow><mo>]</mo></mrow><mo>,</mo><mi>N</mi><mo>></mo><mn>2</mn><mi>s</mi></mrow></math></span>, and <span><math><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>=</mo><mfrac><mrow><mn>2</mn><mi>N</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn><mi>s</mi></mrow></mfrac></mrow></math></span> is the critical Sobolev exponent. Here, <span><math><mrow><mi>V</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mfrac><mrow><mi>N</mi></mrow><mrow><mn>2</mn><mi>s</mi></mrow></mfrac></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> is a given nonnegative potential, <span><math><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup></math></span> denotes the fractional Laplace operator, <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> is an exterior domain with smooth boundary <span><math><mrow><mi>∂</mi><mi>Ω</mi><mo>≠</mo><mo>0̸</mo></mrow></math></span> such that <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mi>Ω</mi></mrow></math></span> non-empty and bounded. Using barycentric functions and the minimax method, we establish the existence of a positive solution <span><math><mrow><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi><mo>,</mo><mn>2</mn></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> under the assumption that <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mi>Ω</mi></mrow></math></span> is contained in a sufficiently small ball.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113911"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of positive solutions for nonlinear elliptic equations with critical growth on exterior domains\",\"authors\":\"Ting-Ting Dai, Zeng-Qi Ou, Chun-Lei Tang, Ying Lv\",\"doi\":\"10.1016/j.na.2025.113911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we prove the existence of solutions for nonlinear elliptic equation with critical growth <span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup><mi>u</mi><mo>+</mo><mi>V</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>u</mi><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi>u</mi><mo>=</mo><mn>0</mn></mtd><mtd><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span> where <span><math><mrow><mi>s</mi><mo>∈</mo><mrow><mo>(</mo></mrow><mn>0</mn><mo>,</mo><mn>1</mn><mrow><mo>]</mo></mrow><mo>,</mo><mi>N</mi><mo>></mo><mn>2</mn><mi>s</mi></mrow></math></span>, and <span><math><mrow><msubsup><mrow><mn>2</mn></mrow><mrow><mi>s</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>=</mo><mfrac><mrow><mn>2</mn><mi>N</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn><mi>s</mi></mrow></mfrac></mrow></math></span> is the critical Sobolev exponent. Here, <span><math><mrow><mi>V</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mfrac><mrow><mi>N</mi></mrow><mrow><mn>2</mn><mi>s</mi></mrow></mfrac></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> is a given nonnegative potential, <span><math><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup></math></span> denotes the fractional Laplace operator, <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> is an exterior domain with smooth boundary <span><math><mrow><mi>∂</mi><mi>Ω</mi><mo>≠</mo><mo>0̸</mo></mrow></math></span> such that <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mi>Ω</mi></mrow></math></span> non-empty and bounded. Using barycentric functions and the minimax method, we establish the existence of a positive solution <span><math><mrow><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi><mo>,</mo><mn>2</mn></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> under the assumption that <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>∖</mo><mi>Ω</mi></mrow></math></span> is contained in a sufficiently small ball.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"262 \",\"pages\":\"Article 113911\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001658\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001658","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Existence of positive solutions for nonlinear elliptic equations with critical growth on exterior domains
In this paper, we prove the existence of solutions for nonlinear elliptic equation with critical growth where , and is the critical Sobolev exponent. Here, is a given nonnegative potential, denotes the fractional Laplace operator, is an exterior domain with smooth boundary such that non-empty and bounded. Using barycentric functions and the minimax method, we establish the existence of a positive solution under the assumption that is contained in a sufficiently small ball.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.