{"title":"基于拓扑度方法的有限图分数阶chen - simons - higgs模型","authors":"Chunlian Liu , Ziyi Chen , Linfeng Wang","doi":"10.1016/j.na.2025.113910","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the fractional Chern–Simons–Higgs models of the form <span><span><span><math><mrow><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup><mi>u</mi><mo>=</mo><mi>λ</mi><msup><mrow><mi>e</mi></mrow><mrow><mi>u</mi></mrow></msup><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>u</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><mi>f</mi></mrow></math></span></span></span>on a connected finite graph, where <span><math><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup></math></span> is the fractional Laplace operator, <span><math><mrow><mi>s</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mi>λ</mi></math></span> is a real number, <span><math><mi>p</mi></math></span> is a non-negative integer, and <span><math><mi>f</mi></math></span> is a function on the graph. We focus on the fractional Laplace operator defined with heat kernels and employ the topological degree theory as our main tool. First, we prove that all solutions to fractional Chern–Simons–Higgs models are uniformly bounded. Second, we calculate the topological degree by discussing the existence of the solution to a homotopy equation case by case. As consequences, we obtain the existence results for the fractional Chern–Simons–Higgs models on a connected finite graph.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"261 ","pages":"Article 113910"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Chern–Simons–Higgs models on finite graphs via a topological degree approach\",\"authors\":\"Chunlian Liu , Ziyi Chen , Linfeng Wang\",\"doi\":\"10.1016/j.na.2025.113910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the fractional Chern–Simons–Higgs models of the form <span><span><span><math><mrow><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup><mi>u</mi><mo>=</mo><mi>λ</mi><msup><mrow><mi>e</mi></mrow><mrow><mi>u</mi></mrow></msup><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>u</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><mi>f</mi></mrow></math></span></span></span>on a connected finite graph, where <span><math><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup></math></span> is the fractional Laplace operator, <span><math><mrow><mi>s</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mi>λ</mi></math></span> is a real number, <span><math><mi>p</mi></math></span> is a non-negative integer, and <span><math><mi>f</mi></math></span> is a function on the graph. We focus on the fractional Laplace operator defined with heat kernels and employ the topological degree theory as our main tool. First, we prove that all solutions to fractional Chern–Simons–Higgs models are uniformly bounded. Second, we calculate the topological degree by discussing the existence of the solution to a homotopy equation case by case. As consequences, we obtain the existence results for the fractional Chern–Simons–Higgs models on a connected finite graph.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"261 \",\"pages\":\"Article 113910\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X25001646\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001646","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Fractional Chern–Simons–Higgs models on finite graphs via a topological degree approach
We investigate the fractional Chern–Simons–Higgs models of the form on a connected finite graph, where is the fractional Laplace operator, , is a real number, is a non-negative integer, and is a function on the graph. We focus on the fractional Laplace operator defined with heat kernels and employ the topological degree theory as our main tool. First, we prove that all solutions to fractional Chern–Simons–Higgs models are uniformly bounded. Second, we calculate the topological degree by discussing the existence of the solution to a homotopy equation case by case. As consequences, we obtain the existence results for the fractional Chern–Simons–Higgs models on a connected finite graph.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.