{"title":"Singular double phase problems with convection","authors":"Nikolaos S. Papageorgiou , Zijia Peng","doi":"10.1016/j.nonrwa.2024.104213","DOIUrl":"10.1016/j.nonrwa.2024.104213","url":null,"abstract":"<div><p>We consider a Dirichlet problem driven by the double phase differential operator and a parametric reaction which has the combined effects of a singular term and of a convective perturbation. Using nonlinear operators of monotone type, truncation and comparison techniques, and fixed point theory, we show that for all small values of the parameter, the problem has a bounded positive solution.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamics for a nonlocal diffusive SIR epidemic model with double free boundaries","authors":"Qianying Zhang , Mingxin Wang","doi":"10.1016/j.nonrwa.2024.104208","DOIUrl":"10.1016/j.nonrwa.2024.104208","url":null,"abstract":"<div><p>In this paper, we study an SIR epidemic model with nonlocal diffusion and double free boundaries, which can be used to describe a class of biological phenomena: the depletion of native resources by all individuals, the infected individuals do not lose their fertility completely, the recovered individuals are immune and no longer infected, the infected and recovered individuals spread along the same free boundary. We first investigate the existence and uniqueness of global solution, long time behaviors and some sufficient conditions for spreading and vanishing. Then we estimate the spreading speed and derive that accelerated spreading could happen when the kernel function does not satisfy a threshold condition.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Existence and uniqueness of the solution to a new class of evolutionary variational hemivariational inequalities","authors":"Zijia Peng , Yining Zhao , Fengzhen Long","doi":"10.1016/j.nonrwa.2024.104210","DOIUrl":"10.1016/j.nonrwa.2024.104210","url":null,"abstract":"<div><p>This paper is concerned with an evolutionary variational hemivariational inequality which is considered in the form of a nonlinear evolution inclusion. In the inclusion, both the convex subdifferential and Clarke subdifferential are related to the time derivative of the unknown function. In addition, the convex subdifferential operator is unbounded and thus the Signorini case is included. Due to these features, the existing surjectivity theorems for evolution inclusions are not applicable. Instead, the Rothe method based on the temporal discretization strategy is used to study the solvability of this new variational hemivariational inequality. We first show the existence of solutions to the discrete stationary problem. Then we establish a convergence result of the semidiscrete scheme and prove the existence and uniqueness of the solution to the inclusion. Moreover, we show the existence and uniqueness of the solution to the original variational hemivariational inequality. Finally, an example is given to illustrate the abstract result.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Velocity extrema in ocean gyre flows","authors":"O. Constantin , A.-M. Persson","doi":"10.1016/j.nonrwa.2024.104206","DOIUrl":"10.1016/j.nonrwa.2024.104206","url":null,"abstract":"<div><p>Ocean gyres are modelled by the two-dimensional vorticity equation for inviscid flow on a rotating sphere, since their flow is governed by the tangential velocity components, whereas the vertical velocity component is negligible. From the vorticity equation we derive nonlinear elliptic equations for the square of the meridional velocity component as well as for the azimuthal velocity component. Using maximum principles we then show that, under suitable conditions on the oceanic vorticity, the velocity extrema are attained on the boundary of a subtropical gyre located in the zonal band between 15<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span> and 45<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span> Northern, respectively Southern latitude, where the five major gyres are found.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Asymptotic behaviors of global weak solutions for an epitaxial thin film growth equation","authors":"Jionghao Lv , Zhong Bo Fang","doi":"10.1016/j.nonrwa.2024.104209","DOIUrl":"10.1016/j.nonrwa.2024.104209","url":null,"abstract":"<div><p>This paper is concerned with the Dirichlet initial boundary value problem of an epitaxial thin film growth equation involving gradient-type logarithmic nonlinearity and absorption terms. By introducing an equivalent norm and approximating Lipschitz functions, combining with the technique of Faedo–Galerkin approximation and the family of potential wells, we establish the well-posedness of global weak solutions. Meantime, we classify the decay properties and grow-up phenomenon of the considered problem by using the energy functional and the related Nehari manifold.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142150111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Blow-up of classical solutions of quasilinear wave equations in one space dimension","authors":"Yuki Haruyama , Hiroyuki Takamura","doi":"10.1016/j.nonrwa.2024.104212","DOIUrl":"10.1016/j.nonrwa.2024.104212","url":null,"abstract":"<div><p>This paper studies the upper bound of the lifespan of classical solutions of the initial value problems for one dimensional wave equations with quasilinear terms of space-, or time-derivatives of the unknown function. The result for the space-derivative case guarantees the optimality of the general theory for nonlinear wave equations, and its proof is carried out by combination of ordinary differential inequality and iteration method on the lower bound of the weighted functional of the solution.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1468121824001512/pdfft?md5=8d3c17560b8046622b27bc7b02e5e3fe&pid=1-s2.0-S1468121824001512-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142150214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Riemann–Hilbert approach to the existence results for the Benjamin–Ono equation on a half-line","authors":"Liliana Esquivel , Ivonne Rivas","doi":"10.1016/j.nonrwa.2024.104211","DOIUrl":"10.1016/j.nonrwa.2024.104211","url":null,"abstract":"<div><p>The main problem addressed in this paper is to study the local existence in time of solutions to the non-homogeneous Neumann initial boundary value problem for the Benjamin–Ono equation on a half-line. In this result, we observe the influence of the boundary data on the behavior of solutions. In order to obtain the characterization of the solution it is essential to use the theory concerning the Riemann–Hilbert problem. We prove local existence in time of the solutions.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142150215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling and analysis of a two-strain immuno-epidemiological model with reinfection","authors":"Hui Wu , Yafei Zhao , Xinjian Xu , Jie Lou","doi":"10.1016/j.nonrwa.2024.104188","DOIUrl":"10.1016/j.nonrwa.2024.104188","url":null,"abstract":"<div><p>In this paper, we formulate a two-strain model with reinfection that combines immunological and epidemiological dynamics across scales, using the COVID-19 pandemic as a case study. Firstly, we conduct a qualitative analysis of both within-host and between-host models. For the within-host model, we prove the existence and stability of equilibria, and Hopf bifurcation occurs from the infection equilibrium with immune response. This implies that, under specific immune states, the virus within an infected individual may persist, and its concentration may also oscillate periodically. For the between-host model, the disease-free equilibrium always exists and is locally asymptotically stable when the epidemiological basic reproduction number <span><math><mrow><msup><mrow><mi>ℜ</mi></mrow><mrow><mn>0</mn></mrow></msup><mo><</mo><mn>1</mn></mrow></math></span>. In addition, the model can have boundary equilibria of strain 1 or strain 2, which are locally asymptotically stable under specific conditions. However, the co-existence equilibrium does not exist. Secondly, to explore the infection and transmission mechanisms of two strain models and obtain reliable parameter values, we utilize statistical data to fit the immuno-epidemiological model. Simultaneously, we conduct an identifiability analysis of the immuno-epidemiological model to ensure the robustness of the fitted parameters. The results demonstrate the reliable estimation of parameter ranges for structurally unidentifiable parameters with minor measurement errors using the affine invariant ensemble Markov Chain Monte Carlo algorithm (GWMCMC). Moreover, simulations illustrate that enhancing treatment of patients infected with BA.2 strains to inhibit the number of viruses released by infected cells can significantly reduce disease spread.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stability for some classes of degenerate nonlinear hyperbolic equations with time delay","authors":"Alessandro Camasta , Genni Fragnelli , Cristina Pignotti","doi":"10.1016/j.nonrwa.2024.104191","DOIUrl":"10.1016/j.nonrwa.2024.104191","url":null,"abstract":"<div><p>We consider several classes of degenerate hyperbolic equations involving delay terms and suitable nonlinearities. The idea is to rewrite the problems in an abstract way and, using semigroup theory and energy method, we study well-posedness and stability. Moreover, some illustrative examples are given.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142049192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Existence of weak solutions to a Cahn–Hilliard–Biot system","authors":"Helmut Abels, Harald Garcke, Jonas Haselböck","doi":"10.1016/j.nonrwa.2024.104194","DOIUrl":"10.1016/j.nonrwa.2024.104194","url":null,"abstract":"<div><p>We prove existence of weak solutions to a diffuse interface model describing the flow of a fluid through a deformable porous medium consisting of two phases. The system non-linearly couples Biot’s equations for poroelasticity, including phase-field dependent material properties, with the Cahn–Hilliard equation to model the evolution of the solid, and is further augmented by a visco-elastic regularization of Kelvin–Voigt type. To obtain this result, we approximate the problem in two steps, where first a semi-Galerkin ansatz is employed to show existence of weak solutions to regularized systems, for which later on compactness arguments allow limit passage. Notably, we also establish a maximal regularity theory for linear visco-elastic problems.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1468121824001330/pdfft?md5=19f83d3860f7c26cb3847128235f7d3f&pid=1-s2.0-S1468121824001330-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142044836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}