{"title":"Existence and uniqueness of time-periodic solutions to the Oberbeck–Boussinesq system","authors":"Tomoyuki Nakatsuka","doi":"10.1016/j.nonrwa.2025.104461","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is devoted to the study of the time-periodic problem for the Oberbeck–Boussinesq system in the whole space. Our investigation is based on the reformulation of the time-periodic problem and does not depend on the analysis of the initial value problem. We construct a time-periodic solution with more information on its structure than the solutions in preceding studies. We also prove that our solution, small in an appropriate sense, is unique in the class of solutions having slightly more regularity.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104461"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001476","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is devoted to the study of the time-periodic problem for the Oberbeck–Boussinesq system in the whole space. Our investigation is based on the reformulation of the time-periodic problem and does not depend on the analysis of the initial value problem. We construct a time-periodic solution with more information on its structure than the solutions in preceding studies. We also prove that our solution, small in an appropriate sense, is unique in the class of solutions having slightly more regularity.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.