Nonlinear Analysis-Real World Applications最新文献

筛选
英文 中文
Hierarchical null controllability of a degenerate parabolic equation with nonlocal coefficient 一类具有非局部系数的退化抛物方程的层次零可控性
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2025-10-04 DOI: 10.1016/j.nonrwa.2025.104513
Juan Límaco, João Carlos Barreira, Suerlan Silva, Luis P. Yapu
{"title":"Hierarchical null controllability of a degenerate parabolic equation with nonlocal coefficient","authors":"Juan Límaco,&nbsp;João Carlos Barreira,&nbsp;Suerlan Silva,&nbsp;Luis P. Yapu","doi":"10.1016/j.nonrwa.2025.104513","DOIUrl":"10.1016/j.nonrwa.2025.104513","url":null,"abstract":"<div><div>In this paper we use a Stackelberg-Nash strategy to show the local null controllability of a parabolic equation where the diffusion coefficient is the product of a degenerate function in space and a nonlocal term. We consider one control called <em>leader</em> and two controls called <em>followers</em>. To each leader we associate a Nash equilibrium corresponding to a bi-objective optimal control problem; then, we find a leader that solves the null controllability problem. The linearized degenerated system is treated adapting Carleman estimates for degenerated systems from Demarque, Límaco and Viana [31] and the local controllability of the non-linear system is obtained using Liusternik’s inverse function theorem. The nonlocal coefficient originates a multiplicative coupling in the optimality system that gives rise to interesting calculations in the applications of the inverse function theorem.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"89 ","pages":"Article 104513"},"PeriodicalIF":1.8,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145223607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wave breaking and traveling waves for the quadratic-cubic Camassa–Holm equation 二次立方Camassa-Holm方程的破波和行波
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2025-09-29 DOI: 10.1016/j.nonrwa.2025.104493
Xuanxuan Han, Shaojie Yang
{"title":"Wave breaking and traveling waves for the quadratic-cubic Camassa–Holm equation","authors":"Xuanxuan Han,&nbsp;Shaojie Yang","doi":"10.1016/j.nonrwa.2025.104493","DOIUrl":"10.1016/j.nonrwa.2025.104493","url":null,"abstract":"<div><div>This paper is concerned with the solutions of the quadratic-cubic Camassa–Holm equation which is a model that explore the change in the physical structure of the solutions from the peakons to the bell-shaped solitary wave solutions. The first type of solutions exhibits finite time singularity in the sense of wave breaking. We perform a refined analysis based on the local structure of the dynamics to provide a condition on the initial data to guarantee wave breaking. The key feature of the method is to refine the analysis on characteristics and conserved quantities to the Riccati-type differential inequality. The other type of solutions which we study is the traveling waves, we investigate nonexistence of the Camassa–Holm-type peaked traveling wave solutions. Moreover, we discover how the symmetric structure is connected to the steady structure of solutions to the quadratic-cubic Camassa–Holm equation, and prove that the classical symmetric waves must be traveling wave solutions.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104493"},"PeriodicalIF":1.8,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145219604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partial regularity and the upper Minkowski dimension of singularities for suitable weak solutions to the 3D co-rotational Beris-Edwards system 三维共旋转Beris-Edwards系统弱解奇异性的部分正则性和上Minkowski维数
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2025-09-26 DOI: 10.1016/j.nonrwa.2025.104511
Qiao Liu, Zhongbao Zuo
{"title":"Partial regularity and the upper Minkowski dimension of singularities for suitable weak solutions to the 3D co-rotational Beris-Edwards system","authors":"Qiao Liu,&nbsp;Zhongbao Zuo","doi":"10.1016/j.nonrwa.2025.104511","DOIUrl":"10.1016/j.nonrwa.2025.104511","url":null,"abstract":"&lt;div&gt;&lt;div&gt;We study partial regularity and the upper Minkowski dimension of potential singularities for suitable weak solutions to the 3d co-rotational Beris-Edwards system for the nematic liquid crystal flows with Landau-de Gennes potential. Precisely, we establish that there exists a &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;ε&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; such that if &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is a suitable weak solution, and satisfies&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;7&lt;/mn&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msubsup&gt;&lt;mo&gt;∫&lt;/mo&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;msub&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/msub&gt;&lt;/msubsup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;∥&lt;/mo&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;∇&lt;/mi&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;∥&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/msubsup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;∥&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;∥&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/msubsup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;ε&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mfrac&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/mfrac&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;7&lt;/mn&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, then &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is regular at &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;. Based upon the regularity result above, we then prove the upper Minkowski dimension of the potential singularities for any suitable weak solution is at most &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mn&gt;975&lt;/mn&gt;&lt;mn&gt;758&lt;/mn&gt;&lt;/mfrac&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mo&gt;≈&lt;/mo&gt;&lt;mn&gt;1.286&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Additionally, if &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;∇&lt;/mi&gt;&lt;mi&gt;Q&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;mo&gt;;&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/msup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mfrac&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mfrac&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mfrac&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;/","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104511"},"PeriodicalIF":1.8,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145157518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Limit cycles of a class of hybrid piecewise differential systems with a discontinuity line of L shape 一类具有L形不连续线的混合分段微分系统的极限环
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2025-09-25 DOI: 10.1016/j.nonrwa.2025.104492
Marly Tatiana Anacona Cabrera , Gerardo Anacona Erazo , Jaume Llibre
{"title":"Limit cycles of a class of hybrid piecewise differential systems with a discontinuity line of L shape","authors":"Marly Tatiana Anacona Cabrera ,&nbsp;Gerardo Anacona Erazo ,&nbsp;Jaume Llibre","doi":"10.1016/j.nonrwa.2025.104492","DOIUrl":"10.1016/j.nonrwa.2025.104492","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In this work we study a class of discontinuous hybrid piecewise differential systems formed by two Hamiltonian systems that we named piecewise hybrid Hamiltonian systems. More precisely, we consider the differential systems with Hamiltonian functions &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mtext&gt;if&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mtext&gt;if&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;with reset maps &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; on &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; on &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, and &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; are either zero, or one of them is a nonzero homogeneous polynomial of degree 3, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104492"},"PeriodicalIF":1.8,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145157517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the value function for optimal control of semilinear parabolic equations 半线性抛物型方程最优控制的值函数
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2025-09-25 DOI: 10.1016/j.nonrwa.2025.104508
Eduardo Casas , Karl Kunisch , Fredi Tröltzsch
{"title":"On the value function for optimal control of semilinear parabolic equations","authors":"Eduardo Casas ,&nbsp;Karl Kunisch ,&nbsp;Fredi Tröltzsch","doi":"10.1016/j.nonrwa.2025.104508","DOIUrl":"10.1016/j.nonrwa.2025.104508","url":null,"abstract":"<div><div>The value function for an infinite horizon tracking type optimal control problem with semilinear parabolic equation is investigated. In view of a possible nonconvexity of the optimal control problem, a local version of the value function is considered. Its differentiability is proved for initial data in a neighborhood around the nominal initial value, provided a second order sufficient optimality condition is fulfilled for the nominal locally optimal control. Based on the differentiability of the value function, a Hamilton-Jacobi-Bellman equation is derived.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104508"},"PeriodicalIF":1.8,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145157632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The evolving surface Cahn–Hilliard equation with a degenerate mobility 具有简并迁移率的曲面Cahn-Hilliard方程
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2025-09-24 DOI: 10.1016/j.nonrwa.2025.104481
Charles M. Elliott, Thomas Sales
{"title":"The evolving surface Cahn–Hilliard equation with a degenerate mobility","authors":"Charles M. Elliott,&nbsp;Thomas Sales","doi":"10.1016/j.nonrwa.2025.104481","DOIUrl":"10.1016/j.nonrwa.2025.104481","url":null,"abstract":"<div><div>We consider the existence of suitable weak solutions to the Cahn-Hilliard equation with a non-constant (degenerate) mobility on a class of evolving surfaces. We also show weak-strong uniqueness for the case of a positive mobility function, and under some further assumptions on the initial data we show uniqueness for a class of strong solutions for a degenerate mobility function.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104481"},"PeriodicalIF":1.8,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145117798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global stability of perturbed chemostat systems 扰动恒化系统的全局稳定性
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2025-09-23 DOI: 10.1016/j.nonrwa.2025.104509
Claudia Alvarez-Latuz , Térence Bayen , Jérôme Coville
{"title":"Global stability of perturbed chemostat systems","authors":"Claudia Alvarez-Latuz ,&nbsp;Térence Bayen ,&nbsp;Jérôme Coville","doi":"10.1016/j.nonrwa.2025.104509","DOIUrl":"10.1016/j.nonrwa.2025.104509","url":null,"abstract":"<div><div>This paper is devoted to the analysis of the global stability of the chemostat system with a perturbation term representing a general form of exchange between species. This conversion term depends not only on species and substrate concentrations, but also on a positive perturbation parameter. After expressing the invariant manifold as a union of a family of compact subsets, our main result states that for each subset in this family, there exists a positive threshold for the perturbation parameter below which the system is globally asymptotically stable in the corresponding subset. Our approach relies on the Malkin-Gorshin Theorem and on a Theorem by Smith and Waltman concerning perturbations of a globally stable steady-state. Properties of the steady-states and numerical simulations of the system’s asymptotic behavior complement this study for two types of perturbation terms between the species.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104509"},"PeriodicalIF":1.8,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145117683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global well-posedness of full compressible magnetohydrodynamic system in 3D bounded domains with large oscillations and vacuum 三维大振荡真空有界区域中全可压缩磁流体动力系统的全局适定性
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2025-09-23 DOI: 10.1016/j.nonrwa.2025.104507
Yazhou Chen , Yunkun Chen , Xue Wang
{"title":"Global well-posedness of full compressible magnetohydrodynamic system in 3D bounded domains with large oscillations and vacuum","authors":"Yazhou Chen ,&nbsp;Yunkun Chen ,&nbsp;Xue Wang","doi":"10.1016/j.nonrwa.2025.104507","DOIUrl":"10.1016/j.nonrwa.2025.104507","url":null,"abstract":"<div><div>The three-dimensional (3D) full compressible magnetohydrodynamic system is studied in a general bounded domain with slip boundary condition for the velocity filed, adiabatic condition for the temperature and perfect conduction for the magnetic field. For the regular initial data with small energy but possibly large oscillations, the global existence of classical and weak solution as well as the exponential decay rate to the initial-boundary-value problem of this system is obtained. In particular, the density and temperature of such a classical solution are both allowed to vanish initially. Moreover, it is also shown that for the classical solutions, the oscillation of the density will grow unboundedly with an exponential rate when the initial vacuum appears (even at a point). Some new observations and useful estimates are developed to overcome the difficulties caused by the slip boundary conditions.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104507"},"PeriodicalIF":1.8,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145117682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the critical points of planar polynomial Hamiltonian systems 平面多项式哈密顿系统的临界点
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2025-09-21 DOI: 10.1016/j.nonrwa.2025.104503
Anna Cima, Armengol Gasull, Francesc Mañosas
{"title":"On the critical points of planar polynomial Hamiltonian systems","authors":"Anna Cima,&nbsp;Armengol Gasull,&nbsp;Francesc Mañosas","doi":"10.1016/j.nonrwa.2025.104503","DOIUrl":"10.1016/j.nonrwa.2025.104503","url":null,"abstract":"<div><div>It is well known that the critical points of planar polynomial Hamiltonian vector fields are either centers or points with an even number of hyperbolic sectors. We give a sharp upper bound of the number of centers that these systems can have in terms of the degrees of their components. We also prove that generically the critical points at infinity of their Poincaré compactification are either nodes or have indices <span><math><mrow><mo>−</mo><mn>1</mn><mo>,</mo><mn>0</mn></mrow></math></span> or 1 and have at most two sectors: both hyperbolic, both elliptic or one of each type. These characteristics are no more true in the non generic situation. Although these results are known we revisit their proofs. The new proofs are shorter and based on a new approach.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104503"},"PeriodicalIF":1.8,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145099838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Serrin-type condition for weak solutions to the shear thickening non-Newtonian fluid 剪切增稠非牛顿流体弱溶液的serrin型条件
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2025-09-19 DOI: 10.1016/j.nonrwa.2025.104510
Hyeong-Ohk Bae , Jörg Wolf
{"title":"Serrin-type condition for weak solutions to the shear thickening non-Newtonian fluid","authors":"Hyeong-Ohk Bae ,&nbsp;Jörg Wolf","doi":"10.1016/j.nonrwa.2025.104510","DOIUrl":"10.1016/j.nonrwa.2025.104510","url":null,"abstract":"<div><div>In the present paper we consider a weak solution to the equations of shear thickening incompressible fluid. We prove that under a Serrin-type condition imposed on the velocity field <span><math><mi>u</mi></math></span>, the field enjoys a higher integrability properties, which ensures that <span><math><mi>u</mi></math></span> is strong. In particular, we prove that for powers law <span><math><mrow><mi>q</mi><mo>≥</mo><mfrac><mn>11</mn><mn>5</mn></mfrac></mrow></math></span> any weak solution is strong.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104510"},"PeriodicalIF":1.8,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145099443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信