{"title":"Global semigroup of conservative weak solutions of the two-component Novikov equation","authors":"K.H. Karlsen , Ya. Rybalko","doi":"10.1016/j.nonrwa.2025.104393","DOIUrl":"10.1016/j.nonrwa.2025.104393","url":null,"abstract":"<div><div>We study the Cauchy problem for the two-component Novikov system with initial data <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> in <span><math><mrow><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> such that the product <span><math><mrow><mrow><mo>(</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> belongs to <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>. We construct a global semigroup of conservative weak solutions. We also discuss the potential concentration phenomena of <span><math><mrow><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow></msub><mi>u</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi></mrow></math></span>, <span><math><mrow><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow></msub><mi>v</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mi>d</mi><mi>x</mi></mrow></math></span>, and <span><math><mrow><mfenced><mrow><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow></msub><mi>u</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow></msub><mi>v</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfenced><mi>d</mi><mi>x</mi></mrow></math></span>, which contribute to wave-breaking and may occur for a set of time with nonzero measure. Finally, we establish the continuity of the data-to-solution map in the uniform norm.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"86 ","pages":"Article 104393"},"PeriodicalIF":1.8,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143881935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The energy equality of the Navier–Stokes equations in the framework of Besov-Lorentz type spaces, and its application to the MHD system","authors":"Taichi Eguchi","doi":"10.1016/j.nonrwa.2025.104389","DOIUrl":"10.1016/j.nonrwa.2025.104389","url":null,"abstract":"<div><div>We find a new refined sufficient condition to establish the energy equality of the incompressible Navier–Stokes equations in the framework of the Besov–Lorentz type space. By virtue of the larger Besov–Lorentz type space than the usual Besov space, our result may include the previous result of Cheskidov–Luo (2020). As an application of our results on the Navier–Stokes equations, we obtain a new sufficient condition to establish the energy equality of the MHD system. Our result may also cover author’s previous result (2024) on the validity of the energy equality of the MHD system. Moreover, it should be noted that our sufficient condition of the magnetic field is strictly weaker than that of the Navier–Stokes equations.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"86 ","pages":"Article 104389"},"PeriodicalIF":1.8,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143881934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global well-posedness and large time behaviors for the generalized MHD equations","authors":"Huan Yu , Haifeng Shang","doi":"10.1016/j.nonrwa.2025.104384","DOIUrl":"10.1016/j.nonrwa.2025.104384","url":null,"abstract":"<div><div>In this paper, we are concerned with the <span><math><mi>n</mi></math></span>D generalized MHD equations. By using a new approach, different from the classical Fourier splitting method developed by Schonbek (Schonbek, 1985, 1986) and the spectral representation technique (Kajikiya and Miyakawa, 1986), we recover and improve some known decay results of weak solutions. Besides, by rewriting the nonlinear terms into new commutators to efficiently distribute derivatives, we obtain the existence, uniqueness and optimal decay estimates of global solutions for the <span><math><mi>n</mi></math></span>D generalized MHD equations with small dissipation index <span><math><mi>β</mi></math></span>.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"86 ","pages":"Article 104384"},"PeriodicalIF":1.8,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143878962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring predator–prey dynamics: Integrating competitor predators, harvesting delay and fear effect on prey with a modified Beddington–DeAngelis functional response","authors":"Anuj Kumar Umrao, Prashant K. Srivastava","doi":"10.1016/j.nonrwa.2025.104391","DOIUrl":"10.1016/j.nonrwa.2025.104391","url":null,"abstract":"<div><div>Selective harvesting is a vital strategy for controlling over-exploitation and protecting the incidental killing of juvenile species. To ensure that the individuals reach a suitable age or size before being harvested, a specific time delay, known as harvesting-induced delay, should be maintained. Also, predators can indirectly slow down the growth rate of prey by inducing fear in them, which affects their behaviour and reproduction. In this work, we study a predator–prey model to examine the impact of predator selective (delayed) harvesting in the presence of fear in prey species and the interspecific competition of predator with the competitive predator. It is assumed that the density of the competitive predator is constant and both predators induce fear in prey. We determine the conditions related to the existence of transcritical and Hopf bifurcations for the non-delay case, and various delay-induced scenarios via Hopf bifurcation. We also numerically explore the impact of delayed harvesting on the system dynamics by simultaneously varying the harvesting effort, fear level, and the interspecific competition with competitive predator in bi-parametric planes. It is observed that the harvesting delay can result in stability invariance, instability invariance, stability change, instability switching, and stability switching phenomena under varied parametric conditions. Further, when the harvesting delay is fixed, the equilibrium point experiences instability invariance and instability change, instability change and instability switching, and instability invariance, stability change and stability switching with respect to the harvesting effort, the interspecific competition, and the fear level, respectively. Our findings indicate that regulated selective harvesting of predator, and a moderate level of fear in prey and interspecific competition with the competitive predator are essential for maintaining stability and coexistence in the ecosystem. The rich and complex dynamics holds significance from a biological viewpoint and may potentially impact the population management strategies.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"86 ","pages":"Article 104391"},"PeriodicalIF":1.8,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143881933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A class of time-dependent quasi-variational–hemivariational inequalities with applications","authors":"Yongjian Liu , Stanisław Migórski , Sylwia Dudek","doi":"10.1016/j.nonrwa.2025.104385","DOIUrl":"10.1016/j.nonrwa.2025.104385","url":null,"abstract":"<div><div>In this paper a class of time-dependent multivalued quasi-variational inequalities of elliptic type with a solution dependent constraint set, is studied. Its solvability and the closedness of the solution set are proved. Then, the results are applied to constrained quasi-variational–hemivariational inequalities for which the relaxed monotonicity condition is not required. Finally, the abstract results are illustrated by two applications. The first one is a time-dependent frictional contact problem with locking materials, and the second one is the stationary incompressible Navier–Stokes equation which models a generalized Newtonian fluid of Bingham type. Results on existence and the closedness of the solution sets are established for both applications.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"86 ","pages":"Article 104385"},"PeriodicalIF":1.8,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143874274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Local bifurcation structure for a free boundary problem modeling tumor growth","authors":"Wenhua He, Ruixiang Xing","doi":"10.1016/j.nonrwa.2025.104383","DOIUrl":"10.1016/j.nonrwa.2025.104383","url":null,"abstract":"<div><div>There are many papers in the literature studying a classic free boundary problem modeling 3-dimensional tumor growth, initiated by Byrne and Chaplain. One of the most important parameters is the tumor aggressiveness constant <span><math><mi>μ</mi></math></span>. Friedman and Reitich (1999) showed the problem admits a unique radially symmetric solution with the free boundary <span><math><mrow><mi>r</mi><mo>=</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>S</mi></mrow></msub></mrow></math></span> when the external nutrient concentration is greater than the threshold concentration for proliferation. A sequence of papers, Fontelos and Friedman (2003), Friedman and Hu (2008) and Pan and Xing (2022) derived a sequence of symmetry-breaking branches bifurcating from the spherical state <span><math><mrow><mi>r</mi><mo>=</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>S</mi></mrow></msub></mrow></math></span> at an increasing sequence of <span><math><mrow><mi>μ</mi><mo>=</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> (<span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></math></span>). Friedman and Hu (2008) studied the structure of the branching solution at <span><math><mrow><mi>μ</mi><mo>=</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>. These bifurcation results cover only the direction of spherical harmonic function <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>0</mn></mrow></msub></math></span>. In this paper, we determine a plethora of new local bifurcation structures at <span><math><mrow><mi>μ</mi><mo>=</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span> for even <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow></math></span> in directions involving combinations of <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span> for <span><math><mrow><mi>m</mi><mo>≠</mo><mn>0</mn></mrow></math></span>.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"86 ","pages":"Article 104383"},"PeriodicalIF":1.8,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143864087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A meshless geometric conservation weighted least square method for solving the shallow water equations","authors":"D. Satyaprasad , Soumendra Nath Kuiry , S. Sundar","doi":"10.1016/j.nonrwa.2025.104382","DOIUrl":"10.1016/j.nonrwa.2025.104382","url":null,"abstract":"<div><div>The shallow water equations are numerically solved to simulate free surface flows. The convective flux terms in the shallow water equations need to be discretized using a Riemann solver to capture shocks and discontinuity for certain flow situations such as hydraulic jump, dam-break wave propagation or bore wave propagation, levee-breaching flows, etc. The approximate Riemann solver can capture shocks and is popular for studying open-channel flow dynamics with traditional mesh-based numerical methods. Though meshless methods can work on highly irregular geometry without involving the complex mesh generation procedure, the shock-capturing capability has not been implemented, especially for solving open-channel flows. Therefore, we have proposed a numerical method, namely, a shock-capturing meshless geometric conservation weighted least square (GC-WLS) method for solving the shallow water equations. The HLL (Harten–Lax–Van Leer) Riemann solver is implemented within the framework of the proposed meshless method. The spatial derivatives in the shallow water equations and the reconstruction of conservative variables for high-order accuracy are computed using the GC-WLS method. The proposed meshless method is tested for various numerically challenging open-channel flow problems, including analytical, laboratory experiments, and a large-scale physical model study on dam-break event.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"85 ","pages":"Article 104382"},"PeriodicalIF":1.8,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143800656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Asymptotic behavior of thin ferroelectric models","authors":"Kamel Hamdache , Djamila Hamroun","doi":"10.1016/j.nonrwa.2025.104379","DOIUrl":"10.1016/j.nonrwa.2025.104379","url":null,"abstract":"<div><div>It was pointed out in Shaw et al. (2000) that the boundary conditions satisfied by the polarization play an important role in the description of the thin-limit of ferroelectric materials. In this work we confirm the importance of this choice. In the present work, we consider the limiting process as the thickness <span><math><mi>h</mi></math></span> of a thin cylinder of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> goes to 0, and when the polarization satisfies two different boundary conditions. The first type of boundary conditions leads to an in-plane model or <span><math><mrow><mn>2</mn><mi>d</mi><mo>−</mo><mn>2</mn><mi>d</mi></mrow></math></span> configuration while the second one leads to an (in-plane)-(out-of-plane) model for the displacement and the polarization namely a <span><math><mrow><mn>2</mn><mi>d</mi><mo>−</mo><mn>3</mn><mi>d</mi></mrow></math></span> configuration. Moreover, the thin-limit process in both cases induces a change of the Lamé coefficients in the displacement equation, the coupling coefficient between the displacement and polarization equations, the double wells potential of the polarization together to a new contribution in the equation of the out-of-plane component of the polarization for the <span><math><mrow><mn>2</mn><mi>d</mi><mo>−</mo><mn>3</mn><mi>d</mi></mrow></math></span> model. The techniques used rely on a rescaling method that penalizes the out-of-plane variable. Uniform bounds with respect to <span><math><mi>h</mi></math></span> are established, compactness techniques are employed, and the limits of the penalized terms are identified.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"85 ","pages":"Article 104379"},"PeriodicalIF":1.8,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143737919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mass-conserving weak solutions to the continuous nonlinear fragmentation equation in the presence of mass transfer","authors":"Ram Gopal Jaiswal, Ankik Kumar Giri","doi":"10.1016/j.nonrwa.2025.104381","DOIUrl":"10.1016/j.nonrwa.2025.104381","url":null,"abstract":"<div><div>A mathematical model for the continuous nonlinear fragmentation equation is considered in the presence of mass transfer. In this paper, we demonstrate the existence of mass-conserving weak solutions to the nonlinear fragmentation equation with mass transfer for collision kernels of the form <span><math><mrow><mi>Φ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><mi>κ</mi><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>+</mo><msup><mrow><mi>y</mi></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>κ</mi><mo>></mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mn>0</mn><mo>≤</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><mn>1</mn></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≠</mo><mn>1</mn></mrow></math></span> for <span><math><mrow><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></math></span>, with integrable daughter distribution functions, thereby extending previous results obtained by Giri & Laurençot (2021). In particular, the existence of at least one global weak solution is shown when the collision kernel exhibits at least linear growth, and one local weak solution when the collision kernel exhibits sublinear growth. In both cases, finite superlinear moment bounds are obtained for positive times without requiring the finiteness of initial superlinear moments. Additionally, the uniqueness of solutions is confirmed in both cases.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"85 ","pages":"Article 104381"},"PeriodicalIF":1.8,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143737920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eduardo Abreu , Richard De la cruz , Juan Juajibioy , Wanderson Lambert
{"title":"Weak asymptotic analysis approach for first order scalar conservation laws with nonlocal flux","authors":"Eduardo Abreu , Richard De la cruz , Juan Juajibioy , Wanderson Lambert","doi":"10.1016/j.nonrwa.2025.104378","DOIUrl":"10.1016/j.nonrwa.2025.104378","url":null,"abstract":"<div><div>In this work, we expand on the weak asymptotic analysis originally proposed in Abreu et al. (2024) for the investigation of scalar equations and systems of conservation laws, extending it to encompass scalar equations with nonlocal fluxes. Subsequently, we apply this refined methodology to explore a specific class of nonlocal scalar conservation laws <span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><msub><mrow><mi>ρ</mi></mrow><mrow><mi>η</mi></mrow></msub><mo>+</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>x</mi></mrow></msub><mfenced><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>η</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>η</mi></mrow></msub><mo>)</mo></mrow><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>ω</mi></mrow><mrow><mi>η</mi></mrow></msub><mo>∗</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>η</mi></mrow></msub><mo>)</mo></mrow></mrow></mfenced><mo>=</mo><mn>0</mn></mrow></math></span>, where <span><math><mrow><mi>η</mi><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mi>η</mi></mrow></msub><mrow><mo>(</mo><mi>⋅</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>η</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mi>ω</mi><mrow><mo>(</mo><mi>⋅</mi><mo>/</mo><mi>η</mi><mo>)</mo></mrow></mrow></math></span> represents a rescaled asymmetric convolution kernel. Essentially, the extension of the weak asymptotic analysis to nonlocal scalar conservation laws yields a family of approximate solutions that exhibit smoothness in time, local integrability, and essential boundedness in the spatial variable. This notable property facilitates the application of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-compactness arguments, leading to the convergence of a solution family. We further extend the concept of weak asymptotic solutions to a broader class of nonlocal scalar conservation laws by constructing a family of ordinary differential equations, providing a set <span><math><mrow><mo>{</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>η</mi></mrow></msub><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mi>ϵ</mi><mo>)</mo></mrow><mo>}</mo></mrow></math></span> of asymptotically approximated solutions. These solutions belong to the space <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>∩</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span> and, in an asymptotic sense, adhere to Kruzhkov’s entropy inequalities. These characteristics, coupled with a suitable spatial and temporal modulus of continuity (which is independent of <span><math><mi>ϵ</mi></math></span> but dependent on <span><math><mi>η</mi></math></span>, representing the horizon for capturing multiple scales of interactions in the nonlocal model), enable us to extract a subsequence converging to the weak and ","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"85 ","pages":"Article 104378"},"PeriodicalIF":1.8,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143734628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}