Nonlinear Analysis-Real World Applications最新文献

筛选
英文 中文
Large relaxation oscillation in slow–fast excitable Brusselator oscillator 慢-快可激布鲁塞尔振荡器中的大弛豫振荡
IF 2 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-05-21 DOI: 10.1016/j.nonrwa.2024.104138
Liyan Zhong , Jianhe Shen
{"title":"Large relaxation oscillation in slow–fast excitable Brusselator oscillator","authors":"Liyan Zhong ,&nbsp;Jianhe Shen","doi":"10.1016/j.nonrwa.2024.104138","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104138","url":null,"abstract":"<div><p>In general, critical manifold loses normal hyperbolicity at folded, transcritical and pitchfork singularities. There is another situation where normal hyperbolicity of critical manifold fails, namely, the alignment of the tangent and normal bundles at the unbounded part of critical manifold. In this case, how to reveal the attracting or repelling natures of unbounded critical manifold is essential to detect the birth of relaxation oscillations. In this article, after the compactification of the unbounded critical curve and then blowing-up the resulting degenerate line, we find that return mechanism exists at the <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mi>ɛ</mi><mo>)</mo></mrow></mrow></math></span>-region of the critical curve in a slow–fast excitable Brusselator oscillator. By so doing the birth of relaxation oscillation near the unbounded critical curve in this model is demonstrated. In addition, we reveal the continuation process from Hopf small-amplitude cycle to large relaxation oscillation of size <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mi>ɛ</mi><mo>)</mo></mrow></mrow></math></span> in the blown-up space. This may be the counterpart of canard explosion in unbounded situation. All the theoretical predictions are verified by numerical simulations.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141072615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a fourth order equation describing single-component film models 关于描述单组分薄膜模型的四阶方程
IF 2 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-05-16 DOI: 10.1016/j.nonrwa.2024.104137
Martina Magliocca
{"title":"On a fourth order equation describing single-component film models","authors":"Martina Magliocca","doi":"10.1016/j.nonrwa.2024.104137","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104137","url":null,"abstract":"<div><p>We study existence results for a fourth order problem describing single-component film models assuming initial data in Wiener spaces.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1468121824000774/pdfft?md5=fa090be4457e4225e16eb90fa56fba0e&pid=1-s2.0-S1468121824000774-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140951343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniform-in-time boundedness in a class of local and nonlocal nonlinear attraction–repulsion chemotaxis models with logistics 一类有物流的局部和非局部非线性吸引-排斥趋化模型中的时间均匀有界性
IF 2 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-05-15 DOI: 10.1016/j.nonrwa.2024.104135
Alessandro Columbu, Rafael Díaz Fuentes, Silvia Frassu
{"title":"Uniform-in-time boundedness in a class of local and nonlocal nonlinear attraction–repulsion chemotaxis models with logistics","authors":"Alessandro Columbu,&nbsp;Rafael Díaz Fuentes,&nbsp;Silvia Frassu","doi":"10.1016/j.nonrwa.2024.104135","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104135","url":null,"abstract":"<div><p>The following fully nonlinear attraction–repulsion and zero-flux chemotaxis model is studied: <span><span><span>(<span><math><mo>♢</mo></math></span>)</span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mfenced><mrow><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>∇</mo><mi>u</mi><mo>−</mo><mi>χ</mi><mi>u</mi><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>∇</mo><mi>v</mi></mrow></mfenced><mspace></mspace></mtd></mtr><mtr><mtd><mfenced><mrow><mspace></mspace><mo>+</mo><mi>ξ</mi><mi>u</mi><msup><mrow><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>∇</mo><mi>w</mi></mrow></mfenced><mo>+</mo><mi>λ</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mi>τ</mi><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>ϕ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mi>τ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>ψ</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><mi>g</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>)</mo></mrow><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>Herein, <span><math><mi>Ω</mi></math></span> is a bounded and smooth domain of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, for <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, <span><math><mrow><mi>χ</mi><mo>,</mo><mi>ξ</mi><mo>,</mo><mi>λ</mi><mo>,</mo><mi>μ</mi><mo>,</mo><mi>r</mi></mrow></math></span> proper positive numbers, <span><math><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1468121824000750/pdfft?md5=7ea2ce86ba1b3e1921a481bb478cddb6&pid=1-s2.0-S1468121824000750-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140951342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Persistence of a competition model of plankton allelopathy in time–space periodic environment 浮游生物等位基因竞争模型在时空周期性环境中的持续性
IF 2 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-05-13 DOI: 10.1016/j.nonrwa.2024.104136
Li-Jun Du, Li Zhang, Qian Cao
{"title":"Persistence of a competition model of plankton allelopathy in time–space periodic environment","authors":"Li-Jun Du,&nbsp;Li Zhang,&nbsp;Qian Cao","doi":"10.1016/j.nonrwa.2024.104136","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104136","url":null,"abstract":"<div><p>This work is devoted to the study of a competition model of plankton allelopathy imposed in time-space periodic environment. We prove that the system admits positive periodic solutions under certain conditions. We further obtain some sufficient conditions for the uniqueness and global stability of the positive periodic solution, which shows that the model is persistent. The main tools for our arguments are comparison theorems based on the maximum principle, sub- and supersolutions method, and an iteration method, which also permit the treatment of some more general reaction–diffusion models in periodic environment.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140914268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimization principle for hemivariational–variational inequality driven by uniformly monotone operators with application to problems in contact mechanics 由均匀单调算子驱动的半变量-变量不等式的最小化原理及其在接触力学问题中的应用
IF 2 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-05-09 DOI: 10.1016/j.nonrwa.2024.104134
Michał Bełdziński, Marek Galewski, Filip Pietrusiak
{"title":"Minimization principle for hemivariational–variational inequality driven by uniformly monotone operators with application to problems in contact mechanics","authors":"Michał Bełdziński,&nbsp;Marek Galewski,&nbsp;Filip Pietrusiak","doi":"10.1016/j.nonrwa.2024.104134","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104134","url":null,"abstract":"<div><p>In this paper, we consider hemivariational–variational inequalities driven by uniformly monotone or <span><math><mi>d</mi></math></span>-monotone operators in Banach spaces. We establish related minimization principles leading to the existence and uniqueness of solutions to the inequality considered as well as we suggest the Ritz type numerical approximations. The theoretical results obtained are next applied to some problems inspired by models from contact mechanics.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140900872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global entropy solutions to a degenerate parabolic–parabolic chemotaxis system for flux-limited dispersal 通量受限分散的退化抛物线-抛物线趋化系统的全局熵解
IF 2 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-05-06 DOI: 10.1016/j.nonrwa.2024.104132
Anna Zhigun
{"title":"Global entropy solutions to a degenerate parabolic–parabolic chemotaxis system for flux-limited dispersal","authors":"Anna Zhigun","doi":"10.1016/j.nonrwa.2024.104132","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104132","url":null,"abstract":"<div><p>Existence of global finite-time bounded entropy solutions to a parabolic–parabolic system proposed in Bellomo et al. (2010) is established in bounded domains under no-flux boundary conditions for nonnegative bounded initial data. This modification of the classical Keller–Segel model features degenerate diffusion and chemotaxis that are both subject to flux-saturation. The approach is based on Schauder’s fixed point theorem and calculus of functions of bounded variation.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140843459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the number of limit cycles in piecewise planar quadratic differential systems 论片面平面二次微分系统中的极限循环数
IF 2 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-05-04 DOI: 10.1016/j.nonrwa.2024.104124
Francisco Braun , Leonardo Pereira Costa da Cruz , Joan Torregrosa
{"title":"On the number of limit cycles in piecewise planar quadratic differential systems","authors":"Francisco Braun ,&nbsp;Leonardo Pereira Costa da Cruz ,&nbsp;Joan Torregrosa","doi":"10.1016/j.nonrwa.2024.104124","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104124","url":null,"abstract":"<div><p>We consider piecewise quadratic perturbations of centers of piecewise quadratic systems in two zones determined by a straight line through the origin. By means of expansions of the displacement map, we are able to find isolated zeros of it, without dealing with the unsurprising difficult integrals inherent in the usual averaging approach. We apply this technique to non-smooth perturbations of the four families of isochronous centers of the Loud family, <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span>, and <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>, as well as to non-smooth perturbations of non-smooth centers given by putting different <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>’s in each zone. To show the coverage of our approach, we apply its first order, which is equivalent to averaging theory of the first order, in perturbations of the already mentioned centers considering all the straight lines through the origin. Then we apply the second order of our approach to perturbations of the above centers for a specific oblique straight line. Here in order to argue we introduce certain blow-ups in the perturbative parameters. As a consequence of our study, we obtain examples of piecewise quadratic systems with at least 12 limit cycles. By analyzing two previous works of the literature claiming much more limit cycles we found some mistakes in the calculations. Therefore, the best lower bound for the number of limit cycles of a piecewise quadratic system is up to now the 12 limit cycles found in the present paper.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140824129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal decay estimate and asymptotic profile for solutions to the generalized Zakharov–Kuznetsov–Burgers equation in 2D 二维广义扎哈罗夫-库兹涅佐夫-伯格斯方程解的最优衰减估计和渐近曲线
IF 2 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-05-03 DOI: 10.1016/j.nonrwa.2024.104130
Ikki Fukuda , Hiroyuki Hirayama
{"title":"Optimal decay estimate and asymptotic profile for solutions to the generalized Zakharov–Kuznetsov–Burgers equation in 2D","authors":"Ikki Fukuda ,&nbsp;Hiroyuki Hirayama","doi":"10.1016/j.nonrwa.2024.104130","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104130","url":null,"abstract":"<div><p>We consider the Cauchy problem for the generalized Zakharov–Kuznetsov–Burgers equation in 2D. This is one of the nonlinear dispersive–dissipative equations, which has a spatial anisotropic dissipative term <span><math><mrow><mo>−</mo><mi>μ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>x</mi><mi>x</mi></mrow></msub></mrow></math></span>. In this paper, we prove that the solution to this problem decays at the rate of <span><math><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup></math></span> in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span>-sense, provided that the initial data <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> satisfies <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> and some appropriate regularity assumptions. Moreover, we investigate the more detailed large time behavior and obtain a lower bound of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span>-norm of the solution. As a result, we prove that the given decay rate <span><math><msup><mrow><mi>t</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mrow></msup></math></span> of the solution to be optimal. Furthermore, combining the techniques used for the parabolic equations and for the Schr<span><math><mover><mrow><mi>o</mi></mrow><mrow><mo>̈</mo></mrow></mover></math></span>dinger equation, we derive the explicit asymptotic profile for the solution.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140825738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatio-temporal patterns and global bifurcation of a nonlinear cross-diffusion predator–prey model with prey-taxis and double Beddington–DeAngelis functional responses 具有猎物-猎物和双贝丁顿-德安吉利斯功能响应的非线性交叉扩散捕食者-猎物模型的时空模式和全局分岔
IF 2 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-05-03 DOI: 10.1016/j.nonrwa.2024.104133
Demou Luo , Qiru Wang
{"title":"Spatio-temporal patterns and global bifurcation of a nonlinear cross-diffusion predator–prey model with prey-taxis and double Beddington–DeAngelis functional responses","authors":"Demou Luo ,&nbsp;Qiru Wang","doi":"10.1016/j.nonrwa.2024.104133","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104133","url":null,"abstract":"<div><p>The aim of this article is investigating the spatio-temporal patterns of a nonlinear cross-diffusion predator–prey model with prey-taxis and double Beddington–DeAngelis functional responses. First, by utilizing user-friendly version of Crandall–Rabinowitz bifurcation theory as an analytical method, the spatio-temporal patterns of positive steady state are obtained. Then, by regarding the cross-diffusion coefficient <span><math><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> as a bifurcation parameter, we will derive a bifurcation theorem for the corresponding nonlinear cross-diffusion model. Moreover, by applying spectrum theory, perturbation of simple eigenvalues and linearized stability, it is discovered that the bifurcation solutions possess local stability near the bifurcating point in proper conditions. These theoretical results mean that the cross-diffusion mechanism can create a coexistence environment for the preys and predator under some circumstances. Finally, a numerical example is proposed to verify our results.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140825739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of manipulative trophically transmitted parasites in the stability of a predator–prey community 操纵性营养传播寄生虫在捕食者-猎物群落稳定性中的作用
IF 2 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-04-30 DOI: 10.1016/j.nonrwa.2024.104123
Jean-Christophe Poggiale , Rafael Bravo de la Parra , Ezio Venturino
{"title":"The role of manipulative trophically transmitted parasites in the stability of a predator–prey community","authors":"Jean-Christophe Poggiale ,&nbsp;Rafael Bravo de la Parra ,&nbsp;Ezio Venturino","doi":"10.1016/j.nonrwa.2024.104123","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104123","url":null,"abstract":"<div><p>In this paper, we are interested in the effect of a trophically transmitted parasite on the structure and dynamics of a resident predator–prey community. The parasite, apart from increasing the mortality rates of its hosts, can also change their physiology or their behaviour, which is known as trait-mediated indirect interaction. We assume that parasite transmission, which entails rapid physiological or behavioural change, is a fast process with respect to the community dynamics, including prey and predator growths and predation. This existence of different time scales allows us to provide analytical results to understand some conditions under which the parasite change the dynamics of the predator–prey community. Thus, we are able to find conditions under which indirect trait-mediated interactions induced by the parasite lead to a coexistence between predators and prey that would not occur in its absence. We also provide conditions, evolutionary deleterious, that ensure the extinction of a predator–prey community that would be viable without parasite intervention. Finally, we show situations in which the action of the parasite destabilizes the predator–prey system without eliminating it, producing oscillations, the mechanism of which is analysed.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1468121824000634/pdfft?md5=c007706a979b3aa387e052c31cc79141&pid=1-s2.0-S1468121824000634-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140816717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信