An L∞-estimate for solutions to p-Laplacian type equations using an obstacle approach and applications

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Elzon C. Bezerra Júnior , João Vitor da Silva , Romário Tomilhero Frias
{"title":"An L∞-estimate for solutions to p-Laplacian type equations using an obstacle approach and applications","authors":"Elzon C. Bezerra Júnior ,&nbsp;João Vitor da Silva ,&nbsp;Romário Tomilhero Frias","doi":"10.1016/j.nonrwa.2025.104320","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we will address a version of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span>-estimate for weak solutions of <span><math><mrow><mi>p</mi><mo>−</mo></mrow></math></span>Laplacian type equations of the form <span><span><span><math><mrow><mo>−</mo><mo>div</mo><mi>a</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mo>∇</mo><mi>u</mi></mrow></mfenced><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mspace></mspace><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mi>∞</mi></mrow></math></span>, <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> (<span><math><mrow><mi>n</mi><mo>⩾</mo><mn>2</mn></mrow></math></span>) is a suitable domain (possibly unbounded with finite measure), <span><math><mrow><mi>f</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>q</mi><mo>&gt;</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></math></span> and <span><math><mrow><mi>q</mi><mo>≥</mo><mfrac><mrow><mi>p</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></math></span> and <span><math><mrow><mi>a</mi><mo>:</mo><mi>Ω</mi><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> is a continuous vector field satisfying certain structural properties. Unlike the non-variational scenario, our approach is based on analyzing an obstacle problem associated with our equation and exploring its intrinsic qualitative properties. Additionally, in some scenarios, our estimates bring to light new geometric quantities that are not present in the results of the classic literature. At the end, we will present some applications of our estimates, which may be essential in certain contexts of quasi-linear PDEs and related topics.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"84 ","pages":"Article 104320"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825000069","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we will address a version of the L-estimate for weak solutions of pLaplacian type equations of the form divax,u=f(x)inΩ,where 1<p<, ΩRn (n2) is a suitable domain (possibly unbounded with finite measure), fLq(Ω) with q>np and qpp1 and a:Ω×RnRn is a continuous vector field satisfying certain structural properties. Unlike the non-variational scenario, our approach is based on analyzing an obstacle problem associated with our equation and exploring its intrinsic qualitative properties. Additionally, in some scenarios, our estimates bring to light new geometric quantities that are not present in the results of the classic literature. At the end, we will present some applications of our estimates, which may be essential in certain contexts of quasi-linear PDEs and related topics.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信