Traveling wave in a ratio-dependent Holling–Tanner system with nonlocal diffusion and strong Allee effect

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Hongliang Li , Min Zhao , Rong Yuan
{"title":"Traveling wave in a ratio-dependent Holling–Tanner system with nonlocal diffusion and strong Allee effect","authors":"Hongliang Li ,&nbsp;Min Zhao ,&nbsp;Rong Yuan","doi":"10.1016/j.nonrwa.2025.104327","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores a ratio-dependent Holling–Tanner predator–prey system with nonlocal diffusion, wherein the prey is subject to strong Allee effect. To be specific, by using Schauder’s fixed point theorem and iterative technique, we establish a theoretical framework regarding the existence of traveling waves. We meticulously construct upper and lower solutions and a novel sequence, and employ the squeeze method to validate the existence of traveling waves for <span><math><mrow><mi>c</mi><mo>&gt;</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span>. Additionally, by spreading speed theory and the comparison principle, we confirm the existence of traveling wave with <span><math><mrow><mi>c</mi><mo>=</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span>. Finally, we investigate the nonexistence of traveling waves for <span><math><mrow><mi>c</mi><mo>&lt;</mo><msup><mrow><mi>c</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span>, and conclusively determine the minimal wave speed.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"84 ","pages":"Article 104327"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825000136","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores a ratio-dependent Holling–Tanner predator–prey system with nonlocal diffusion, wherein the prey is subject to strong Allee effect. To be specific, by using Schauder’s fixed point theorem and iterative technique, we establish a theoretical framework regarding the existence of traveling waves. We meticulously construct upper and lower solutions and a novel sequence, and employ the squeeze method to validate the existence of traveling waves for c>c. Additionally, by spreading speed theory and the comparison principle, we confirm the existence of traveling wave with c=c. Finally, we investigate the nonexistence of traveling waves for c<c, and conclusively determine the minimal wave speed.
具有非局部扩散和强Allee效应的比相关Holling-Tanner系统中的行波
本文研究了一类非局部扩散的比率依赖的Holling-Tanner捕食者-食饵系统,其中食饵受强Allee效应的影响。具体来说,我们利用Schauder不动点定理和迭代技术,建立了行波存在性的理论框架。我们精心构造了c>;c *的上下解和一个新的序列,并利用挤压方法验证了行波的存在性。此外,利用传播速度理论和比较原理,我们证实了c=c *的行波的存在性。最后,我们研究了c<;c *的行波不存在性,并最终确定了最小波速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信