Nonlinear Analysis-Real World Applications最新文献

筛选
英文 中文
On the number of limit cycles in piecewise smooth generalized Abel equations with many separation lines 论具有多条分离线的片断光滑广义阿贝尔方程中的极限循环数
IF 2 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-06-11 DOI: 10.1016/j.nonrwa.2024.104151
Renhao Tian, Yulin Zhao
{"title":"On the number of limit cycles in piecewise smooth generalized Abel equations with many separation lines","authors":"Renhao Tian,&nbsp;Yulin Zhao","doi":"10.1016/j.nonrwa.2024.104151","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104151","url":null,"abstract":"<div><p>This paper investigates generalized Abel equations of the form <span><math><mrow><mi>d</mi><mi>x</mi><mo>/</mo><mi>d</mi><mi>θ</mi><mo>=</mo><mi>A</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>+</mo><mi>B</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi></mrow></msup></mrow></math></span>, where <span><math><mi>p</mi></math></span>, <span><math><mrow><mi>q</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>≥</mo><mn>2</mn></mrow></msub></mrow></math></span>, <span><math><mrow><mi>p</mi><mo>≠</mo><mi>q</mi></mrow></math></span>, and <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>B</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mrow></math></span> are piecewise trigonometrical polynomials of degree <span><math><mi>m</mi></math></span> with <span><math><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span> separation lines <span><math><mrow><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mo>⋯</mo><mo>&lt;</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>&lt;</mo><mn>2</mn><mi>π</mi></mrow></math></span>. The main objective is to obtain the maximum number of non-zero limit cycles (i.e., non-zero isolated periodic solutions) that the equation can have, denoted by <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></math></span>, and to analyze how the number and location of separation lines <span><math><msubsup><mrow><mrow><mo>{</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msubsup></math></span> affect <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></math></span>. By using the theories of Melnikov functions and ECT-systems, we obtain lower bounds for <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi><mo>−</mo><","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141303118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zero-viscosity limit for Boussinesq equations with vertical viscosity and Navier boundary in the half plane 半平面上具有垂直粘性和纳维边界的布森斯克方程的零粘性极限
IF 2 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-06-11 DOI: 10.1016/j.nonrwa.2024.104150
Mengni Li , Yan-Lin Wang
{"title":"Zero-viscosity limit for Boussinesq equations with vertical viscosity and Navier boundary in the half plane","authors":"Mengni Li ,&nbsp;Yan-Lin Wang","doi":"10.1016/j.nonrwa.2024.104150","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104150","url":null,"abstract":"<div><p>In this paper we study the zero-viscosity limit of 2-D Boussinesq equations with vertical viscosity and zero diffusivity, which is a nonlinear system with partial dissipation arising in atmospheric sciences and oceanic circulation. The domain is taken as <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> with Navier-type boundary. We prove the nonlinear stability of the approximate solution constructed by boundary layer expansion in conormal Sobolev space. The expansion order and convergence rates for the inviscid limit are also identified in this paper. Our paper extends a partial zero-dissipation limit result of Boussinesq system with full dissipation by Chae D. (2006) in the whole space to the case with partial dissipation and Navier boundary in the half plane.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nontrivial solutions to affine p-Laplace equations via a perturbation strategy 通过扰动策略实现仿射 p 拉普拉斯方程的非微观解
IF 2 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-06-08 DOI: 10.1016/j.nonrwa.2024.104154
Edir Júnior Ferreira Leite , Marcos Montenegro
{"title":"Nontrivial solutions to affine p-Laplace equations via a perturbation strategy","authors":"Edir Júnior Ferreira Leite ,&nbsp;Marcos Montenegro","doi":"10.1016/j.nonrwa.2024.104154","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104154","url":null,"abstract":"<div><p>This paper is concerned with the existence of nontrivial solutions for affine <span><math><mi>p</mi></math></span>-Laplace equations involving subcritical nonlinearities behaving at <span><math><mrow><mi>u</mi><mo>=</mo><mn>0</mn></mrow></math></span> as <span><math><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> with <span><math><mrow><mi>q</mi><mo>&lt;</mo><mi>p</mi><mo>−</mo><mn>1</mn></mrow></math></span> and at the infinity as <span><math><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> with <span><math><mrow><mi>r</mi><mo>&gt;</mo><mi>p</mi><mo>−</mo><mn>1</mn></mrow></math></span>. Since local Palais–Smale compactness for affine energy type functionals is an open hard question, the problem is overcome by means of a perturbative approach using the space norm. Mountain-pass critical points are constructed from a limit process of corresponding ones in the modified affine context. Compactness and stability of MP solution sets are also addressed.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141290342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two models for sandpile growth in weighted graphs 加权图中沙堆增长的两个模型
IF 2 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-06-07 DOI: 10.1016/j.nonrwa.2024.104155
J.M. Mazón, J. Toledo
{"title":"Two models for sandpile growth in weighted graphs","authors":"J.M. Mazón,&nbsp;J. Toledo","doi":"10.1016/j.nonrwa.2024.104155","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104155","url":null,"abstract":"<div><p>In this paper we study <span><math><mi>∞</mi></math></span>-Laplacian type diffusion equations in weighted graphs obtained as limit as <span><math><mrow><mi>p</mi><mo>→</mo><mi>∞</mi></mrow></math></span> to two types of <span><math><mi>p</mi></math></span>-Laplacian evolution equations in such graphs. We propose these diffusion equations, that are governed by the subdifferential of a convex energy functionals associated to the indicator function of the set <span><math><mrow><msubsup><mrow><mi>K</mi></mrow><mrow><mi>∞</mi></mrow><mrow><mi>G</mi></mrow></msubsup><mo>≔</mo><mfenced><mrow><mi>u</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>V</mi><mo>,</mo><msub><mrow><mi>ν</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo></mrow><mspace></mspace><mo>:</mo><mspace></mspace><mo>|</mo><mi>u</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>−</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo><mo>≤</mo><mn>1</mn><mspace></mspace><mspace></mspace><mi>i</mi><mi>f</mi><mspace></mspace><mspace></mspace><mi>x</mi><mo>∼</mo><mi>y</mi></mrow></mfenced></mrow></math></span> and the set <span><math><mrow><msubsup><mrow><mi>K</mi></mrow><mrow><mi>∞</mi></mrow><mrow><mi>w</mi></mrow></msubsup><mo>≔</mo><mfenced><mrow><mi>u</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>V</mi><mo>,</mo><msub><mrow><mi>ν</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo></mrow><mspace></mspace><mo>:</mo><mspace></mspace><mo>|</mo><mi>u</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>−</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mrow><msub><mrow><mi>w</mi></mrow><mrow><mi>x</mi><mi>y</mi></mrow></msub></mrow></msqrt></mrow></mfrac><mspace></mspace><mspace></mspace><mi>i</mi><mi>f</mi><mspace></mspace><mspace></mspace><mi>x</mi><mo>∼</mo><mi>y</mi></mrow></mfenced></mrow></math></span> as models for sandpile growth in weighted graphs. Moreover, we also analyse the collapse of the initial condition when it does not belong to the stable sets <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>∞</mi></mrow><mrow><mi>G</mi></mrow></msubsup></math></span> or <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>∞</mi></mrow><mrow><mi>w</mi></mrow></msubsup></math></span> by means of an abstract result given in Bénilan (2003). We give an interpretation of the limit problems in terms of Monge–Kantorovich mass transport theory. Finally, we give some explicit solutions of simple examples that illustrate the dynamics of the sandpile growing or collapsing.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1468121824000956/pdfft?md5=20687dd0e01f3c2727a6b21b5f35cead&pid=1-s2.0-S1468121824000956-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141292240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global well-posedness to the 1D compressible quantum Navier–Stokes–Poisson equations with large initial data 具有大初始数据的一维可压缩量子纳维-斯托克斯-泊松方程的全局好求解性
IF 2 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-06-05 DOI: 10.1016/j.nonrwa.2024.104148
Zeyuan Liu , Lan Zhang
{"title":"Global well-posedness to the 1D compressible quantum Navier–Stokes–Poisson equations with large initial data","authors":"Zeyuan Liu ,&nbsp;Lan Zhang","doi":"10.1016/j.nonrwa.2024.104148","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104148","url":null,"abstract":"<div><p>This paper is concerned with the global existence and large time behavior of classical solutions away from vacuum to the Cauchy problem of the 1D compressible quantum Navier–Stokes–Poisson equations with large initial perturbation. Moreover, we obtain the global strong/classical solution of Navier–Stokes–Poisson equations through the vanishing dispersion limit with certain convergence rates. We focus on the case that the viscosity depends on density linearly which extends the former results of constant viscosity in Zhang et al. (2022) by the second author. Some useful estimates are developed to deduce the uniform-in-time lower and upper bounds on the specific volume and the electric potential.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141263911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global existence of solutions for the drift–diffusion system with large initial data in Ḃ−2∞,∞ (Rd) Ḃ-2∞,∞(Rd)中大初始数据漂移扩散系统解的全局存在性
IF 2 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-06-04 DOI: 10.1016/j.nonrwa.2024.104145
Jihong Zhao, Rong Jin, Hao Chen
{"title":"Global existence of solutions for the drift–diffusion system with large initial data in Ḃ−2∞,∞ (Rd)","authors":"Jihong Zhao,&nbsp;Rong Jin,&nbsp;Hao Chen","doi":"10.1016/j.nonrwa.2024.104145","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104145","url":null,"abstract":"<div><p>In this paper, we study the Cauchy problem of the drift–diffusion system arising from semiconductor model. We prove that if a certain nonlinear function of the initial data is small enough, in a Besov type space, then there is a global solution to this drift–diffusion system. We also provide an example of initial data satisfying that nonlinear smallness condition, but whose norm be chosen arbitrarily large in <span><math><mrow><msubsup><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow><mrow><mi>∞</mi><mo>,</mo><mi>∞</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141250578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemotactic cell aggregation viewed as instability and phase separation 化合细胞聚集被视为不稳定性和相分离
IF 2 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-06-04 DOI: 10.1016/j.nonrwa.2024.104147
Kyunghan Choi, Yong-Jung Kim
{"title":"Chemotactic cell aggregation viewed as instability and phase separation","authors":"Kyunghan Choi,&nbsp;Yong-Jung Kim","doi":"10.1016/j.nonrwa.2024.104147","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104147","url":null,"abstract":"<div><p>The paper focuses on the pattern formation of a chemotactic cell aggregation model with a mechanism that density suppresses motility. The model exhibits four types of cell aggregation patterns: single-point peaks, hot spots, cold spots, and stripes, depending on the parameters and mean density. The analysis is performed in two ways. First, traditional instability analysis reveals the existence of two critical densities. This local analysis shows patterns emerge if the initial mean density lies between the two values. Second, a phase separation method using van der Waals’ double well potential reveals that pattern formation is possible in a bigger parameter regime that includes the one identified by the local analysis. This non-local analysis shows that pattern formation occurs beyond the parameter regimes of the classical local instability analysis.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141250579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semigroup well-posedness and exponential stability for the von Kármán beam equation under the combined boundary control of nonlinear delays and non-delays 非线性延迟和非延迟联合边界控制下 von Kármán 梁方程的半群好求和指数稳定性
IF 2 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-05-31 DOI: 10.1016/j.nonrwa.2024.104143
Yi Cheng , Xin Wang , Baowei Feng , Donal O’ Regan
{"title":"Semigroup well-posedness and exponential stability for the von Kármán beam equation under the combined boundary control of nonlinear delays and non-delays","authors":"Yi Cheng ,&nbsp;Xin Wang ,&nbsp;Baowei Feng ,&nbsp;Donal O’ Regan","doi":"10.1016/j.nonrwa.2024.104143","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104143","url":null,"abstract":"<div><p>This paper considers the stabilization problem of the von Kármán beam equation with a combined boundary control of nonlinear delays and nonlinear non-delays. The combined boundary controls are applied at the transverse and longitudinal boundaries of the von Kármán beam, respectively. In this paper the nonlinear semigroup method is adopted in the investigation for the establishment of the well-posedness of the resulting closed-loop system. Constructing an appropriate energy-like function, the exponential decay rate of energy of the closed-loop system is demonstrated by a generalized Gronwall-type integral inequality and the integral multiplier technique.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141244510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spreading dynamics for an epidemic model of West-Nile virus with shifting environment 环境变化的西尼罗河病毒流行模型的传播动力学
IF 2 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-05-31 DOI: 10.1016/j.nonrwa.2024.104144
Inkyung Ahn , Wonhyung Choi , Jong-Shenq Guo
{"title":"Spreading dynamics for an epidemic model of West-Nile virus with shifting environment","authors":"Inkyung Ahn ,&nbsp;Wonhyung Choi ,&nbsp;Jong-Shenq Guo","doi":"10.1016/j.nonrwa.2024.104144","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104144","url":null,"abstract":"<div><p>We study the disease-spreading dynamics of the West Nile virus (WNv) epidemic model under shifting climatic conditions. A WNv epidemic model is developed incorporating a shifting net growth term to depict the evolving mosquito habitat. First, we comprehensively characterize the spreading dynamics of mosquitoes for any given climate change speed compared with the intrinsic spreading speed of mosquitoes. Utilizing the results from mosquito dynamics, we determine the spreading dynamics of infected birds and mosquitoes, taking into account relationships among the shifting speed and the spreading speeds of mosquito and WNv. Ultimately, we find that infected mosquitoes and birds propagate, and their population densities converge to a stable positive endemic state. This paper provides crucial insights into the impact of climate change on the spread of vector-borne diseases such as WNv.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141244500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multifluid model with chemically reacting components — Construction of weak solutions 具有化学反应成分的多流体模型 - 弱解法的构建
IF 2 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-05-25 DOI: 10.1016/j.nonrwa.2024.104139
Piotr B. Mucha , Šárka Nečasová , Maja Szlenk
{"title":"A multifluid model with chemically reacting components — Construction of weak solutions","authors":"Piotr B. Mucha ,&nbsp;Šárka Nečasová ,&nbsp;Maja Szlenk","doi":"10.1016/j.nonrwa.2024.104139","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104139","url":null,"abstract":"<div><p>We investigate the existence of weak solutions to a multi-component system, consisting of compressible chemically reacting components, coupled with the compressible Stokes equation for the velocity. Specifically, we consider the case of irreversible chemical reactions and assume a nonlinear relation between the pressure and the particular densities. These assumptions cause the additional difficulties in the mathematical analysis, due to the possible presence of vacuum.</p><p>It is shown that there exists a global weak solution, satisfying the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span> bounds for all the components. We obtain strong compactness of the sequence of densities in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> spaces, under the assumption that all components are strictly positive. The applied method captures the properties of models of high generality, which admit an arbitrary number of components. Furthermore, the framework that we develop can handle models that contain both diffusing and non-diffusing elements.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141097740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信