Nonlinear Analysis-Real World Applications最新文献

筛选
英文 中文
Global-in-time error estimates of non-relativistic limits for Euler–Maxwell system near non-constant equilibrium 欧拉-麦克斯韦系统在非恒定平衡附近的非相对论极限的全局时间误差估计
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-06-24 DOI: 10.1016/j.nonrwa.2024.104163
Yachun Li , Peng Lu , Liang Zhao
{"title":"Global-in-time error estimates of non-relativistic limits for Euler–Maxwell system near non-constant equilibrium","authors":"Yachun Li ,&nbsp;Peng Lu ,&nbsp;Liang Zhao","doi":"10.1016/j.nonrwa.2024.104163","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104163","url":null,"abstract":"<div><p>It was proved that Euler–Maxwell systems converge globally-in-time to Euler–Poisson systems near non-constant equilibrium states when the speed of light <span><math><mrow><mi>c</mi><mo>→</mo><mi>∞</mi></mrow></math></span>. In this paper, we establish the global-in-time error estimates between smooth solutions of Euler–Maxwell systems and those of Euler–Poisson systems near non-constant equilibrium states. The main difficulty lies in the singularity of the error variable for the electric field <span><math><mi>E</mi></math></span>, so that more careful estimates for the time derivatives of error variables should be established. The proof takes good advantage of the anti-symmetric structure of the error system and an induction argument on the order of the derivatives.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141482153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parabolic double phase obstacle problems 抛物线双相障碍问题
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-06-24 DOI: 10.1016/j.nonrwa.2024.104169
Siegfried Carl , Patrick Winkert
{"title":"Parabolic double phase obstacle problems","authors":"Siegfried Carl ,&nbsp;Patrick Winkert","doi":"10.1016/j.nonrwa.2024.104169","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104169","url":null,"abstract":"<div><p>We prove existence results for the parabolic double phase obstacle problem: Find <span><math><mrow><mi>u</mi><mo>∈</mo><mi>K</mi><mo>⊂</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> with <span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>⋅</mi><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span> satisfying <span><span><span><math><mrow><mn>0</mn><mo>∈</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>A</mi><mi>u</mi><mo>+</mo><mi>F</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><mi>∂</mi><msub><mrow><mi>I</mi></mrow><mrow><mi>K</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mspace></mspace><mtext>in</mtext><msubsup><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>A</mi><mo>:</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>→</mo><msubsup><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></math></span> given by <span><span><span><math><mrow><mi>A</mi><mi>u</mi><mo>≔</mo><mo>−</mo><mo>div</mo><mfenced><mrow><msup><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>∇</mo><mi>u</mi><mo>+</mo><mi>μ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><msup><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>∇</mo><mi>u</mi></mrow></mfenced><mspace></mspace><mtext>for</mtext><mi>u</mi><mo>∈</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo></mrow></math></span></span></span>is the double phase operator acting on <span><math><mrow><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>τ</mi><mo>;</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>H</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>H</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> denoting the associated Musielak–Orlicz Sobolev space with generalized homogeneous boundary values. The obstacle is represented by the closed convex set <span><math><mi>K</mi></math></span> with the obstacle function <span><math><mi>ψ</mi></math></span> through <span><span><span><math><mrow><mi>K</mi><mo>=</mo><mrow><mo>{</mo><mi>v</mi><mo>∈</mo><msub><mrow><mi>X</mi></mrow><mrow><mn>0</mn></mrow></msub><mspace></mspace><mo>:</mo><mspace></mspace><mi>v</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>≤</mo><mi>ψ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mtext>for a.a.</mtext><mspace></mspace><mrow><mo>(</mo><mi>x</mi><mo>,<","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1468121824001093/pdfft?md5=8c45c9bac4bc0752dc7ba149da99cd83&pid=1-s2.0-S1468121824001093-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple standing waves of matrix nonlinear Schrödinger equations with mixed growth nonlinearities in RN RN 中具有混合增长非线性的矩阵非线性薛定谔方程的多重驻波
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-06-24 DOI: 10.1016/j.nonrwa.2024.104153
Ting Zhang, Guanwei Chen
{"title":"Multiple standing waves of matrix nonlinear Schrödinger equations with mixed growth nonlinearities in RN","authors":"Ting Zhang,&nbsp;Guanwei Chen","doi":"10.1016/j.nonrwa.2024.104153","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104153","url":null,"abstract":"<div><p>In the whole space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, we study the existence of two standing waves for a class of matrix nonlinear Schrödinger equations with potentials by using variational methods, where the nonlinearities are sublinear or asymptotically linear at infinity. The novelties are as follows. (1) The matrix nonlinear equations are defined in the whole space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. (2) The nonlinearities are composed of two mixed nonlinear terms with different growth conditions. (3) The weight function may be sign-changing. (4) Our results can be applied to many examples.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141481793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hybrid Krasnosel’skiĭ-Schauder fixed point theorem for systems 系统的克拉斯诺瑟尔斯基-肖德尔混合定点定理
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-06-24 DOI: 10.1016/j.nonrwa.2024.104165
Gennaro Infante , Giovanni Mascali , Jorge Rodríguez–López
{"title":"A hybrid Krasnosel’skiĭ-Schauder fixed point theorem for systems","authors":"Gennaro Infante ,&nbsp;Giovanni Mascali ,&nbsp;Jorge Rodríguez–López","doi":"10.1016/j.nonrwa.2024.104165","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104165","url":null,"abstract":"<div><p>We provide new results regarding the localization of the solutions of nonlinear operator systems. We make use of a combination of Krasnosel’skiĭ cone compression–expansion type methodologies and Schauder-type ones. In particular we establish a localization of the solution of the system within the product of a conical shell and of a closed convex set. By iterating this procedure we prove the existence of multiple solutions. We illustrate our theoretical results by applying them to the solvability of systems of Hammerstein integral equations. In the case of two specific boundary value problems and with given nonlinearities, we are also able to obtain a numerical solution, consistent with our theoretical results.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1468121824001056/pdfft?md5=984ec1968dd493852031ece7dfb44f60&pid=1-s2.0-S1468121824001056-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141481797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local stability and topological structure of completely integrable differential systems 完全可积分微分系统的局部稳定性和拓扑结构
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-06-24 DOI: 10.1016/j.nonrwa.2024.104172
Yantao Yang , Xiang Zhang , Zhiyu Wang
{"title":"Local stability and topological structure of completely integrable differential systems","authors":"Yantao Yang ,&nbsp;Xiang Zhang ,&nbsp;Zhiyu Wang","doi":"10.1016/j.nonrwa.2024.104172","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104172","url":null,"abstract":"<div><p>Completely integrable systems are dynamically simple in common sense, but they may have complicated dynamics around the points where their first integrals are not functionally independent. Tudoran in 2017 provided a criterion for characterizing stability of nondegenerated regular singularities of completely integrable systems. Here we present a new criterion which is more useful than that by Tudoran, in the sense that the cases that his criterion works on are also applicable to ours, whereas there are cases that our criterion works on but his does not.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141481792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boundedness of weak solutions to a 3D chemotaxis-Stokes system with slow p−Laplacian diffusion and rotation 具有慢 p-Laplacian 扩散和旋转的三维趋化-斯托克斯系统弱解的有界性
IF 2 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-06-19 DOI: 10.1016/j.nonrwa.2024.104164
Haolan He, Zhongping Li
{"title":"Boundedness of weak solutions to a 3D chemotaxis-Stokes system with slow p−Laplacian diffusion and rotation","authors":"Haolan He,&nbsp;Zhongping Li","doi":"10.1016/j.nonrwa.2024.104164","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104164","url":null,"abstract":"<div><p>In this paper, we consider the following chemotaxis-Stokes system with general sensitivity and rotation <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mi>⋅</mi><mo>∇</mo><mi>n</mi><mo>=</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>n</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>∇</mo><mi>n</mi><mo>)</mo></mrow><mo>−</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>n</mi><mi>S</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>n</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow><mo>∇</mo><mi>c</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>c</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mi>⋅</mi><mo>∇</mo><mi>c</mi><mo>=</mo><mi>Δ</mi><mi>c</mi><mo>−</mo><mi>n</mi><mi>c</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mo>∇</mo><mi>P</mi><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>n</mi><mo>∇</mo><mi>ϕ</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mo>∇</mo><mi>⋅</mi><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>&gt;</mo><mn>0</mn></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>in a smooth bounded domain <span><math><mrow><mi>Ω</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> with zero-flux boundary and no-slip boundary condition. We prove the boundedness of the weak solutions to the initial–boundary value problem of the 3D chemotaxis-Stokes system with <span><math><mrow><mi>p</mi><mo>−</mo></mrow></math></span>Laplacian diffusion if <span><math><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mi>p</mi><mo>+</mo><mi>α</mi><mo>&gt;</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><msqrt><mrow><mn>6</mn></mrow></msqrt></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></math></span> and <span><math><mrow><mi>p</mi><mo>&gt;</mo><mn>2</mn></mrow></math></span>, which improves the results of papers [Chen et al., Nonlinear Anal. Real World Appl., 76 (2024) 103996; Zhuang et al., Nonlinear Anal. Real World Appl., 56 (2020) 103163 and Tao et al., J. Differ. Equ., 268(11) (2020) 6879–6919] and extends the result of the paper [Jin, J. Differ. Equ. 287 (2021) 148–184] to the chemotaxis system with general sensitivity and rotation.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141429260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to “Chemotaxis systems with singular sensitivity and logistic source: Boundedness, persistence, absorbing set, and entire solutions” [Nonlinear Anal. Real World Appl. 69 (2023) 27] 具有奇异敏感性和逻辑源的趋化系统:有界性、持久性、吸收集和全解" [Nonlinear Anal. Real World Appl.
IF 2 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-06-19 DOI: 10.1016/j.nonrwa.2024.104141
Halil Ibrahim Kurt, Wenxian Shen
{"title":"Erratum to “Chemotaxis systems with singular sensitivity and logistic source: Boundedness, persistence, absorbing set, and entire solutions” [Nonlinear Anal. Real World Appl. 69 (2023) 27]","authors":"Halil Ibrahim Kurt,&nbsp;Wenxian Shen","doi":"10.1016/j.nonrwa.2024.104141","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104141","url":null,"abstract":"<div><p>This note is to make some corrections on the conditions for the initial function <span><math><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and the parameters in the system (1.1) in our paper Halil Ibrahim Kurt and Wenxian Shen (2023)</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1468121824000816/pdfft?md5=87abb43f898ed81e07f38244896cbe80&pid=1-s2.0-S1468121824000816-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141429261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local well-posedness of solutions to 2D mixed Prandtl equations in Sobolev space without monotonicity and lower bound 无单调性和下限的索波列夫空间二维混合普朗特方程解的局部好求解性
IF 2 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-06-14 DOI: 10.1016/j.nonrwa.2024.104140
Yuming Qin , Xiaolei Dong
{"title":"Local well-posedness of solutions to 2D mixed Prandtl equations in Sobolev space without monotonicity and lower bound","authors":"Yuming Qin ,&nbsp;Xiaolei Dong","doi":"10.1016/j.nonrwa.2024.104140","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104140","url":null,"abstract":"<div><p>In this paper, we investigate two-dimensional Prandtl–Shercliff regime equations on the half plane and prove the local existence and uniqueness of solutions for any initial datum by using the classical energy methods in Sobolev space. Compared to the existence and uniqueness of solutions to the classical Prandtl equations where the monotonicity condition of the tangential velocity plays a key role, this monotonicity condition is not needed for 2D mixed Prandtl equations. Besides, compared with the existence and uniqueness of solutions to the 2D MHD boundary layer where the initial tangential magnetic field has a lower bound plays an important role, this lower bound condition is also not needed for 2D mixed Prandtl equations. In other words, we need neither the monotonicity condition of the tangential velocity nor the initial tangential magnetic field has a lower bound and for any initial datum in this paper. As far as we have learned, this is the first result of <span><math><mrow><mn>2</mn><mi>D</mi></mrow></math></span> mixed Prandtl–Shercliff regime equations in Sobolev space.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141322404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
General decay results for a viscoelastic wave equation with the logarithmic nonlinear source and dynamic Wentzell boundary condition 具有对数非线性源和动态温策尔边界条件的粘弹性波方程的一般衰减结果
IF 2 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-06-13 DOI: 10.1016/j.nonrwa.2024.104149
Dandan Guo , Zhifei Zhang
{"title":"General decay results for a viscoelastic wave equation with the logarithmic nonlinear source and dynamic Wentzell boundary condition","authors":"Dandan Guo ,&nbsp;Zhifei Zhang","doi":"10.1016/j.nonrwa.2024.104149","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104149","url":null,"abstract":"<div><p>In this work we investigate a viscoelastic wave equation involving a logarithmic nonlinear source and dynamic Wentzell boundary condition. Making some assumptions on the memory kernel function and using convex function theory and Lyapunov method, we establish the general decay estimate of the solutions. Finally we give two examples to illustrate our results.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141314166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Principal eigenvalues for Fully Non Linear singular or degenerate operators in punctured balls 穿刺球中全非线性奇异或退化算子的主特征值
IF 2 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-06-12 DOI: 10.1016/j.nonrwa.2024.104142
Françoise Demengel
{"title":"Principal eigenvalues for Fully Non Linear singular or degenerate operators in punctured balls","authors":"Françoise Demengel","doi":"10.1016/j.nonrwa.2024.104142","DOIUrl":"https://doi.org/10.1016/j.nonrwa.2024.104142","url":null,"abstract":"<div><p>This paper is devoted to the proof of the existence of the principal eigenvalue and related eigenfunctions for fully nonlinear degenerate or singular uniformly elliptic equations posed in a punctured ball, in presence of a singular potential. More precisely, we analyze existence, uniqueness and regularity of solutions <span><math><mrow><mo>(</mo><msub><mrow><mover><mrow><mi>λ</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow><mrow><mi>γ</mi></mrow></msub><mo>,</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>)</mo></mrow></math></span> of the equation <span><math><mrow><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup><mi>F</mi><mrow><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>)</mo></mrow><mo>+</mo><msub><mrow><mover><mrow><mi>λ</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow><mrow><mi>γ</mi></mrow></msub><mfrac><mrow><msubsup><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow><mrow><mn>1</mn><mo>+</mo><mi>α</mi></mrow></msubsup></mrow><mrow><msup><mrow><mi>r</mi></mrow><mrow><mi>γ</mi></mrow></msup></mrow></mfrac><mo>=</mo><mn>0</mn><mspace></mspace><mtext>in</mtext><mspace></mspace><mi>B</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow><mo>,</mo><mspace></mspace><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>=</mo><mn>0</mn><mspace></mspace><mtext>on</mtext><mspace></mspace><mi>∂</mi><mi>B</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> where <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></mrow></math></span> in <span><math><mrow><mi>B</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>&gt;</mo><mo>−</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>γ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. We prove existence of radial solutions which are continuous on <span><math><mover><mrow><mi>B</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow><mo>¯</mo></mover></math></span> in the case <span><math><mrow><mi>γ</mi><mo>&lt;</mo><mn>2</mn><mo>+</mo><mi>α</mi></mrow></math></span>, and a non existence result for <span><math><mrow><mi>γ</mi><mo>&gt;</mo><mn>2</mn><mo>+</mo><mi>α</mi></mrow></math></span>. We also give the explicit value of <span><math><msub><mrow><mover><mrow><mi>λ</mi></mrow><mrow><mo>̄</mo></mrow></mover></mrow><mrow><mn>2</mn><mo>+</mo><mi>α</mi></mrow></msub></math></span> in the case of the Pucci’s operators, which generalizes the Hardy–Sobolev constant for the Laplacian, and the previous results of Birindelli et al. <span>[1]</span>.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141308390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信