Sarah Serhal , Georges Chamoun , Mazen Saad , Toni Sayah
{"title":"Bilinear optimal control for chemotaxis model: The case of two-sidedly degenerate diffusion with Volume-Filling Effect","authors":"Sarah Serhal , Georges Chamoun , Mazen Saad , Toni Sayah","doi":"10.1016/j.nonrwa.2025.104362","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study an optimal control problem for a coupled non-linear system of reaction–diffusion equations with degenerate diffusion, consisting of two partial differential equations representing the density of cells and the concentration of the chemotactic agent. By controlling the concentration of the chemical substrates, this study can guide the optimal growth of cells. The novelty of this work lies on the direct and dual models that remain in a weak setting, which is uncommon in the recent literature for solving optimal control systems. Moreover, it is known that the adjoint problems offer a powerful approach to quantifying the uncertainty associated with model inputs. However, these systems typically lack closed-form solutions, making it challenging to obtain weak solutions. For that, the well-posedness of the direct problem is first well guaranteed. Then, the existence of an optimal control and the first-order optimality conditions are established. Finally, weak solutions for the adjoint system to the non-linear degenerate direct model, are introduced and investigated.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"85 ","pages":"Article 104362"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825000483","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study an optimal control problem for a coupled non-linear system of reaction–diffusion equations with degenerate diffusion, consisting of two partial differential equations representing the density of cells and the concentration of the chemotactic agent. By controlling the concentration of the chemical substrates, this study can guide the optimal growth of cells. The novelty of this work lies on the direct and dual models that remain in a weak setting, which is uncommon in the recent literature for solving optimal control systems. Moreover, it is known that the adjoint problems offer a powerful approach to quantifying the uncertainty associated with model inputs. However, these systems typically lack closed-form solutions, making it challenging to obtain weak solutions. For that, the well-posedness of the direct problem is first well guaranteed. Then, the existence of an optimal control and the first-order optimality conditions are established. Finally, weak solutions for the adjoint system to the non-linear degenerate direct model, are introduced and investigated.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.