{"title":"Multi-channel generalized average sampling and reconstruction over shift invariant spaces","authors":"S. Yugesh , R.N. Mohapatra","doi":"10.1016/j.nonrwa.2025.104444","DOIUrl":"10.1016/j.nonrwa.2025.104444","url":null,"abstract":"<div><div>A multichannel generalized average sampling is analyzed in a shift invariant space <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>φ</mi><mo>)</mo></mrow></mrow></math></span> with frame generator <span><math><mrow><mi>φ</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>.</mo></mrow></math></span> We present the essential and comprehensive criteria that guarantee that multi-channel generalized average sampling expansion for uniform sampling points. A nonuniform sampling version of the problem is also analyzed.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104444"},"PeriodicalIF":1.8,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144472398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global center and limit cycles in generalized piecewise cubic Liénard systems","authors":"Ting Chen, Jianwei Peng","doi":"10.1016/j.nonrwa.2025.104452","DOIUrl":"10.1016/j.nonrwa.2025.104452","url":null,"abstract":"<div><div>This paper aims to investigate two classical problems related to global center conditions and bifurcation of small-amplitude limit cycles in piecewise Liénard systems of the form <span><math><mrow><mover><mrow><mi>x</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mi>y</mi><mo>−</mo><mi>F</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mover><mrow><mi>y</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mo>−</mo><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> are both piecewise cubic polynomials. The explicit global center conditions at the origin are derived from this piecewise Liénard system. Furthermore, utilizing Poincaré-Lyapunov theory, the existence of nine limit cycles (isolate periodic solutions) around the origin is proved. As recognized to now, it is a new lower bound of the maximum number of limit cycles for such Liénard systems.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104452"},"PeriodicalIF":1.8,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144480882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Discontinuous Cucker–Smale model: Achieving flocking behavior through Filippov’s differential inclusion","authors":"Hyunjin Ahn","doi":"10.1016/j.nonrwa.2025.104441","DOIUrl":"10.1016/j.nonrwa.2025.104441","url":null,"abstract":"<div><div>We introduce a modified multi-agent system inspired by the Cucker–Smale model <span><span>[1]</span></span>, incorporating a discontinuous interaction law to better capture abrupt behavioral transitions in collective dynamics. To rigorously address the discontinuities, we employ Filippov’s differential inclusion framework, which enables a systematic analysis of solutions in the presence of vector field discontinuities. Within this framework, we identify appropriate sufficient conditions on the initial data and system parameters under which the agents are guaranteed to achieve flocking in finite time. This model proposes a new analytical framework that explains discontinuous flocking behavior, which classical continuous models often fail to capture.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104441"},"PeriodicalIF":1.8,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144364807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the existence of globally bounded solutions for a spatial Solow-Swan model with density-dependent motion","authors":"Yingying Li, Kaiqiang Li, Liqiong Pu, Jiashan Zheng","doi":"10.1016/j.nonrwa.2025.104453","DOIUrl":"10.1016/j.nonrwa.2025.104453","url":null,"abstract":"<div><div>This research examines a spatial Solow-Swan model characterized by density-dependent motion, as illustrated by the following system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>γ</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi><mo>−</mo><mi>u</mi><mi>ϕ</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>μ</mi><mi>u</mi><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>σ</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>α</mi></mrow></msup><msup><mrow><mi>v</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>where <span><math><mrow><mi>σ</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> are positive constants, <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mrow><mo>(</mo><mi>N</mi><mo>≥</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> denotes a bounded domain with a smooth boundary, and the functions <span><math><mi>ϕ</mi></math></span> and <span><math><mi>γ</mi></math></span> belong to <span><math><mrow><msup><mrow><mi>C</mi></mrow><mrow><mn>3</mn></mrow></msup><mrow><mo>(</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mi>ϕ</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>,</mo><mi>γ</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></mrow></math></span> for all <span><math><mrow><mi>s</mi><mo>≥</mo><mn>0</mn></mrow></math></span>. The conditions for the parameters are specified as follows: <span><span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><mi>σ</mi><mo>+</mo><mi>α</mi><mo>></mo><mfrac><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow><mo>,</mo></mtd><mtd></mtd><mtd><mtext>for</mtext><mi>μ</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mn>1</mn><mo>−</mo><mi>α</mi><mo><</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>,</mo></mtd><mtd></mtd><mtd><mtext>for</mtext><mi>μ</mi><mo>=</mo><mn>0</mn><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>Under Neumann boundary conditions, a unique globally bounded classical solution ","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104453"},"PeriodicalIF":1.8,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144364825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamics in a two-species system with common dynamical resources and general competition term","authors":"Jianping Gao , Changfeng Liu , Wenyan Lian","doi":"10.1016/j.nonrwa.2025.104436","DOIUrl":"10.1016/j.nonrwa.2025.104436","url":null,"abstract":"<div><div>This paper deals with the following two-species competition system with common dynamical resources <span><span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>Δ</mi><mi>u</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace></mtd><mtd><mspace></mspace><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>Δ</mi><mi>v</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>v</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><msub><mrow><mi>f</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace></mtd><mtd><mspace></mspace><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mi>τ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>3</mn></mrow></msub><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>w</mi><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>μ</mi><mi>w</mi><mrow><mo>(</mo><mi>m</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>−</mo><mi>w</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>under homogeneous Neumann boundary conditions in a smoothly bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>≥</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>τ</mi><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mspace></mspace><mn>1</mn><mo>}</mo></mrow></mrow></math></span>, function <span><math><mrow><mi>m</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>∈</mo><mi>C</mi><mrow><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span>, the parameters <span><math><mi>μ</mi></math></span>, <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>j</mi></mrow></msub><mrow><","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104436"},"PeriodicalIF":1.8,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144364819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A remark on the regularity criterion for the Navier–Stokes equations in terms of one directional derivative of the velocity","authors":"Zdenek Skalak","doi":"10.1016/j.nonrwa.2025.104437","DOIUrl":"10.1016/j.nonrwa.2025.104437","url":null,"abstract":"<div><div>In this paper we consider the incompressible Navier–Stokes equations in the whole three dimensional space. We present a regularity criterion in terms of one directional derivative of the velocity, which is an improvement of known results.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104437"},"PeriodicalIF":1.8,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144335835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global solvability of large initial data to three-dimensional compressible MHD equations with density-dependent viscosities","authors":"Jie Fan, Yongteng Gu, Xiangdi Huang","doi":"10.1016/j.nonrwa.2025.104435","DOIUrl":"10.1016/j.nonrwa.2025.104435","url":null,"abstract":"<div><div>This paper studies the three-dimensional isentropic compressible magnetohydrodynamic equations with density-dependent viscosities, considering both the Cauchy problem and periodic problem. We prove that the strong solution exists globally provided that the initial density is large enough. This is a result that generalizes previous classical results which the solutions have small perturbations from the resting state. This result can also be seen as an extension of the results for Yu [<em>Math. Methods Appl. Sci.</em>, <strong>46</strong> (2023) 10123–10136] and Huang–Li–Zhang [arXiv:2408.04305, 2024], who established similar results for the compressible Navier–Stokes equations. At the same time, this article improves on Li–Lu–Shang’s recent result [arXiv:2408.04995, 2024] on the compressible MHD equations. The key idea of the proof is to establish an effective energy functional about density, velocity and magnetic field, which combines Huang–Li–Zhang’s article [arXiv:2408.04305, 2024] on the barotropic compressible Navier–Stokes equations with Fan–Gu–Huang’s techniques [<em>Discrete Contin. Dyn. Syst.</em>, <strong>45</strong> (2025) 2628–2649] on the non-homogeneous incompressible MHD equations.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104435"},"PeriodicalIF":1.8,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144322712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Riemann boundary value problems for the Chaplygin gas outside a convex cornered wedge","authors":"Bingsong Long","doi":"10.1016/j.nonrwa.2025.104433","DOIUrl":"10.1016/j.nonrwa.2025.104433","url":null,"abstract":"<div><div>We consider two-dimensional Riemann boundary value problems of Euler equations for the Chaplygin gas with two piecewise constant initial data outside a convex cornered wedge. In self-similar coordinates, when the flow at the wedge corner is subsonic, this problem can be reformulated as a boundary value problem for nonlinear degenerate elliptic equations in concave domains containing a corner larger than <span><math><mi>π</mi></math></span>. It is shown that there does not exist a global Lipschitz solution for this case. We analyze the sign of the flow velocity along a certain direction, and then obtain this result by deriving a contradiction. Besides, the unique existence of the solution to the problem is established when the flow at the wedge corner is supersonic. The results obtained here are also valid for the problem of shock diffraction by a convex cornered wedge.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104433"},"PeriodicalIF":1.8,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144307731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stability and bifurcation of a predator–prey model with variable search rate in advective environments","authors":"Qiguo Qian, Weihua Jiang, Xun Cao","doi":"10.1016/j.nonrwa.2025.104423","DOIUrl":"10.1016/j.nonrwa.2025.104423","url":null,"abstract":"<div><div>In this paper, we consider a predator–prey model with variable search rate in advective environments. First, by applying the variational expression of the principal eigenvalue, we analyze its continuity and monotonicity with respect to parameters, and combine techniques such as priori estimates and comparison principle to obtain the global asymptotic stability of trivial and semi-trivial steady-state solutions. The complete classification of long time dynamic behaviors of the system is conducted using advection rate <span><math><mi>q</mi></math></span> and half-saturation constant <span><math><mi>g</mi></math></span> which is used to reflect the magnitude of search rate as parameters. Moreover, owing to the properties of the principal eigenvalue and principal eigenfunction, we establish the local existence and stability of the positive steady state, as well as the global existence, through bifurcation theory and persistence theory, respectively. Furthermore, for such non-monotone system with advective term and nonlinear functional response, we prove that it exhibits a unique spatially inhomogeneous positive steady state for a small advection rate when the predator has an intermediate search rate. More interestingly, we observe complex phenomena, including spatially inhomogeneous periodic solution, and find that both prey and predator tend to move towards the middle of the river when the search rate is large.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104423"},"PeriodicalIF":1.8,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144270758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The existence and uniqueness of positive steady states of a general predator–prey system in advective environments","authors":"Anqi Qu , Jinfeng Wang , Xuelian Xu","doi":"10.1016/j.nonrwa.2025.104422","DOIUrl":"10.1016/j.nonrwa.2025.104422","url":null,"abstract":"<div><div>This paper is committed to investigating the existence and uniqueness of positive steady states for a general predator–prey system in advective environments, subject to general boundary conditions. We demonstrate that, provided a positive steady-state solution exists, its uniqueness is guaranteed as long as the predator’s functional response is sublinear. Specifically, we show that the complicated conditions necessary for ensuring the uniqueness of positive steady states in a reaction–diffusion–advection predator–prey model can be simplified.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104422"},"PeriodicalIF":1.8,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144239593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}