一类流体-流体耦合流动控制的半变分不等式的数值分析

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Feifei Jing , Weimin Han , Guanyu Zhou
{"title":"一类流体-流体耦合流动控制的半变分不等式的数值分析","authors":"Feifei Jing ,&nbsp;Weimin Han ,&nbsp;Guanyu Zhou","doi":"10.1016/j.nonrwa.2025.104366","DOIUrl":null,"url":null,"abstract":"<div><div>We explore the well-posedness and conduct a numerical analysis of hemivariational inequalities for the coupled stationary Navier–Stokes/Navier–Stokes system. The interface condition involves the Clark subgradient and serves as a generalization of various interface interaction relations, including nonlinear transmission conditions and friction-type conditions. We present an existence and uniqueness result for a solution of the continuous model. We propose a domain decomposition approach to solve the coupled system and examine the convergence of iterations. Moreover, we use the finite element approximation to discretize the hemivariational inequality of the coupled system and derive error estimates, which lead to an optimal order for the <span><math><mrow><mi>P</mi><mn>1</mn><mi>b</mi></mrow></math></span>/<span><math><mrow><mi>P</mi><mn>1</mn></mrow></math></span> pair under appropriate solution regularity assumptions. Numerical results are reported that illustrate the optimal convergence order predicted by theoretical analysis.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"85 ","pages":"Article 104366"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of a class of hemivariational inequalities governed by fluid–fluid coupled flow\",\"authors\":\"Feifei Jing ,&nbsp;Weimin Han ,&nbsp;Guanyu Zhou\",\"doi\":\"10.1016/j.nonrwa.2025.104366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We explore the well-posedness and conduct a numerical analysis of hemivariational inequalities for the coupled stationary Navier–Stokes/Navier–Stokes system. The interface condition involves the Clark subgradient and serves as a generalization of various interface interaction relations, including nonlinear transmission conditions and friction-type conditions. We present an existence and uniqueness result for a solution of the continuous model. We propose a domain decomposition approach to solve the coupled system and examine the convergence of iterations. Moreover, we use the finite element approximation to discretize the hemivariational inequality of the coupled system and derive error estimates, which lead to an optimal order for the <span><math><mrow><mi>P</mi><mn>1</mn><mi>b</mi></mrow></math></span>/<span><math><mrow><mi>P</mi><mn>1</mn></mrow></math></span> pair under appropriate solution regularity assumptions. Numerical results are reported that illustrate the optimal convergence order predicted by theoretical analysis.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"85 \",\"pages\":\"Article 104366\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825000525\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825000525","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了耦合平稳Navier-Stokes / Navier-Stokes系统的适定性,并对其半变分不等式进行了数值分析。界面条件涉及到Clark次梯度,是各种界面相互作用关系的概括,包括非线性传输条件和摩擦型条件。给出了一类连续模型解的存在唯一性结果。我们提出了一种求解耦合系统的域分解方法,并检验了迭代的收敛性。此外,我们利用有限元近似对耦合系统的半变分不等式进行离散化,并推导出误差估计,从而在适当的解正则性假设下得到P1b/P1对的最优阶。数值结果证明了理论分析预测的最优收敛阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical analysis of a class of hemivariational inequalities governed by fluid–fluid coupled flow
We explore the well-posedness and conduct a numerical analysis of hemivariational inequalities for the coupled stationary Navier–Stokes/Navier–Stokes system. The interface condition involves the Clark subgradient and serves as a generalization of various interface interaction relations, including nonlinear transmission conditions and friction-type conditions. We present an existence and uniqueness result for a solution of the continuous model. We propose a domain decomposition approach to solve the coupled system and examine the convergence of iterations. Moreover, we use the finite element approximation to discretize the hemivariational inequality of the coupled system and derive error estimates, which lead to an optimal order for the P1b/P1 pair under appropriate solution regularity assumptions. Numerical results are reported that illustrate the optimal convergence order predicted by theoretical analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信