{"title":"D1,p(RN)与Cb(RN,1+|x|N−pp−1α)的局部极小值","authors":"Siegfried Carl , Hossein Tehrani","doi":"10.1016/j.nonrwa.2025.104335","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>X</mi><mo>=</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> be the Beppo-Levi space (homogeneous Sobolev space) with <span><math><mrow><mn>2</mn><mo>≤</mo><mi>p</mi><mo><</mo><mi>N</mi></mrow></math></span>, and for <span><math><mrow><mfrac><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo><</mo><mi>α</mi><mo>≤</mo><mn>1</mn></mrow></math></span> let <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>=</mo><mi>X</mi><mo>∩</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>b</mi></mrow></msub><mrow><mo>(</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo><mn>1</mn><mo>+</mo><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mfrac><mrow><mi>N</mi><mo>−</mo><mi>p</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mi>α</mi></mrow></msup></mrow><mo>)</mo></mrow></mrow></math></span> be the subspace of bounded continuous functions with weight <span><math><mrow><mn>1</mn><mo>+</mo><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mfrac><mrow><mi>N</mi><mo>−</mo><mi>p</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mi>α</mi></mrow></msup></mrow></math></span>. In this paper we prove a Brezis-Nirenberg type result for the energy functional <span><math><mrow><mi>Φ</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>R</mi></mrow></math></span> related to the quasilinear elliptic equation in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> of the form <span><span><span><math><mrow><mi>u</mi><mo>∈</mo><mi>X</mi><mo>:</mo><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>g</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mspace></mspace><mtext>in</mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mrow></math></span></span></span>which states that a local minimizer of <span><math><mi>Φ</mi></math></span> in the <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-topology must be a local minimizer in the ”bigger” <span><math><mi>X</mi></math></span>-topology.</div><div>Global <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span>-estimates for solutions of general quasilinear elliptic equations of divergence type in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> on the one hand, and decay estimates for solutions of <span><math><mi>p</mi></math></span>-Laplace equations via nonlinear Wolff potentials as well as comparison theorems for <span><math><mi>p</mi></math></span>-Laplacian type operators on the other hand play an important role in the proofs.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"85 ","pages":"Article 104335"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"D1,p(RN) versus Cb(RN,1+|x|N−pp−1α) local minimizers\",\"authors\":\"Siegfried Carl , Hossein Tehrani\",\"doi\":\"10.1016/j.nonrwa.2025.104335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mrow><mi>X</mi><mo>=</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> be the Beppo-Levi space (homogeneous Sobolev space) with <span><math><mrow><mn>2</mn><mo>≤</mo><mi>p</mi><mo><</mo><mi>N</mi></mrow></math></span>, and for <span><math><mrow><mfrac><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac><mo><</mo><mi>α</mi><mo>≤</mo><mn>1</mn></mrow></math></span> let <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>=</mo><mi>X</mi><mo>∩</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>b</mi></mrow></msub><mrow><mo>(</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo><mn>1</mn><mo>+</mo><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mfrac><mrow><mi>N</mi><mo>−</mo><mi>p</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mi>α</mi></mrow></msup></mrow><mo>)</mo></mrow></mrow></math></span> be the subspace of bounded continuous functions with weight <span><math><mrow><mn>1</mn><mo>+</mo><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mfrac><mrow><mi>N</mi><mo>−</mo><mi>p</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mi>α</mi></mrow></msup></mrow></math></span>. In this paper we prove a Brezis-Nirenberg type result for the energy functional <span><math><mrow><mi>Φ</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>R</mi></mrow></math></span> related to the quasilinear elliptic equation in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> of the form <span><span><span><math><mrow><mi>u</mi><mo>∈</mo><mi>X</mi><mo>:</mo><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>u</mi><mo>=</mo><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi>g</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mspace></mspace><mtext>in</mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mrow></math></span></span></span>which states that a local minimizer of <span><math><mi>Φ</mi></math></span> in the <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-topology must be a local minimizer in the ”bigger” <span><math><mi>X</mi></math></span>-topology.</div><div>Global <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup></math></span>-estimates for solutions of general quasilinear elliptic equations of divergence type in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> on the one hand, and decay estimates for solutions of <span><math><mi>p</mi></math></span>-Laplace equations via nonlinear Wolff potentials as well as comparison theorems for <span><math><mi>p</mi></math></span>-Laplacian type operators on the other hand play an important role in the proofs.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"85 \",\"pages\":\"Article 104335\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825000215\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825000215","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
设X=D1,p(RN)为2≤p<;N的Beppo-Levi空间(齐次Sobolev空间),对于p−1p<;α≤1,设Vα=X∩Cb(RN,1+| X |N−pp−1α)为权值为1+| X |N−pp−1α的有界连续函数的子空间。本文证明了关于RN中u∈X:−Δpu=a(X)g(u)inRN的拟线性椭圆方程的能量泛函Φ:X→R的一个Brezis-Nirenberg型结果,证明了Φ在v α-拓扑中的局部极小值必然是“较大”X-拓扑中的局部极小值。一般拟线性椭圆型散度方程在RN中解的全局L∞估计,p-拉普拉斯方程解的非线性Wolff势的衰减估计以及p-拉普拉斯型算子的比较定理在证明中发挥了重要作用。
D1,p(RN) versus Cb(RN,1+|x|N−pp−1α) local minimizers
Let be the Beppo-Levi space (homogeneous Sobolev space) with , and for let be the subspace of bounded continuous functions with weight . In this paper we prove a Brezis-Nirenberg type result for the energy functional related to the quasilinear elliptic equation in of the form which states that a local minimizer of in the -topology must be a local minimizer in the ”bigger” -topology.
Global -estimates for solutions of general quasilinear elliptic equations of divergence type in on the one hand, and decay estimates for solutions of -Laplace equations via nonlinear Wolff potentials as well as comparison theorems for -Laplacian type operators on the other hand play an important role in the proofs.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.