{"title":"非齐次NLS方程的明显适定性和不适定性结果","authors":"Luccas Campos , Simão Correia , Luiz Gustavo Farah","doi":"10.1016/j.nonrwa.2025.104336","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the initial value problem associated to the inhomogeneous nonlinear Schrödinger equation, <span><span><span><math><mrow><mi>i</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>μ</mi><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mo>−</mo><mi>b</mi></mrow></msup><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow><mspace></mspace><mtext>or</mtext><mspace></mspace><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow><mrow><mi>s</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>with <span><math><mrow><mi>μ</mi><mo>=</mo><mo>±</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>b</mi><mo>></mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>s</mi><mo>≥</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo>≤</mo><mfrac><mrow><mn>4</mn><mo>−</mo><mn>2</mn><mi>b</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn><mi>s</mi></mrow></mfrac></mrow></math></span> (<span><math><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mi>∞</mi></mrow></math></span> if <span><math><mrow><mi>s</mi><mo>≥</mo><mi>N</mi><mo>/</mo><mn>2</mn></mrow></math></span>). By means of an adapted version of the fractional Leibniz rule, we prove new local well-posedness results in Sobolev spaces for a large range of parameters. We also prove an ill-posedness result for this equation, through a delicate analysis of the associated Duhamel operator.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"85 ","pages":"Article 104336"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp well-posedness and ill-posedness results for the inhomogeneous NLS equation\",\"authors\":\"Luccas Campos , Simão Correia , Luiz Gustavo Farah\",\"doi\":\"10.1016/j.nonrwa.2025.104336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the initial value problem associated to the inhomogeneous nonlinear Schrödinger equation, <span><span><span><math><mrow><mi>i</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>μ</mi><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mo>−</mo><mi>b</mi></mrow></msup><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow><mspace></mspace><mtext>or</mtext><mspace></mspace><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow><mrow><mi>s</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>with <span><math><mrow><mi>μ</mi><mo>=</mo><mo>±</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>b</mi><mo>></mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>s</mi><mo>≥</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo>≤</mo><mfrac><mrow><mn>4</mn><mo>−</mo><mn>2</mn><mi>b</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn><mi>s</mi></mrow></mfrac></mrow></math></span> (<span><math><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><mi>∞</mi></mrow></math></span> if <span><math><mrow><mi>s</mi><mo>≥</mo><mi>N</mi><mo>/</mo><mn>2</mn></mrow></math></span>). By means of an adapted version of the fractional Leibniz rule, we prove new local well-posedness results in Sobolev spaces for a large range of parameters. We also prove an ill-posedness result for this equation, through a delicate analysis of the associated Duhamel operator.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"85 \",\"pages\":\"Article 104336\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825000227\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825000227","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Sharp well-posedness and ill-posedness results for the inhomogeneous NLS equation
We consider the initial value problem associated to the inhomogeneous nonlinear Schrödinger equation, with , , and ( if ). By means of an adapted version of the fractional Leibniz rule, we prove new local well-posedness results in Sobolev spaces for a large range of parameters. We also prove an ill-posedness result for this equation, through a delicate analysis of the associated Duhamel operator.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.