非齐次NLS方程的明显适定性和不适定性结果

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Luccas Campos , Simão Correia , Luiz Gustavo Farah
{"title":"非齐次NLS方程的明显适定性和不适定性结果","authors":"Luccas Campos ,&nbsp;Simão Correia ,&nbsp;Luiz Gustavo Farah","doi":"10.1016/j.nonrwa.2025.104336","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the initial value problem associated to the inhomogeneous nonlinear Schrödinger equation, <span><span><span><math><mrow><mi>i</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>μ</mi><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mo>−</mo><mi>b</mi></mrow></msup><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow><mspace></mspace><mtext>or</mtext><mspace></mspace><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow><mrow><mi>s</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>with <span><math><mrow><mi>μ</mi><mo>=</mo><mo>±</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>b</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>s</mi><mo>≥</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>≤</mo><mfrac><mrow><mn>4</mn><mo>−</mo><mn>2</mn><mi>b</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn><mi>s</mi></mrow></mfrac></mrow></math></span> (<span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mi>∞</mi></mrow></math></span> if <span><math><mrow><mi>s</mi><mo>≥</mo><mi>N</mi><mo>/</mo><mn>2</mn></mrow></math></span>). By means of an adapted version of the fractional Leibniz rule, we prove new local well-posedness results in Sobolev spaces for a large range of parameters. We also prove an ill-posedness result for this equation, through a delicate analysis of the associated Duhamel operator.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"85 ","pages":"Article 104336"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp well-posedness and ill-posedness results for the inhomogeneous NLS equation\",\"authors\":\"Luccas Campos ,&nbsp;Simão Correia ,&nbsp;Luiz Gustavo Farah\",\"doi\":\"10.1016/j.nonrwa.2025.104336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the initial value problem associated to the inhomogeneous nonlinear Schrödinger equation, <span><span><span><math><mrow><mi>i</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>μ</mi><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mo>−</mo><mi>b</mi></mrow></msup><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>α</mi></mrow></msup><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow><mspace></mspace><mtext>or</mtext><mspace></mspace><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mover><mrow><mi>H</mi></mrow><mrow><mo>̇</mo></mrow></mover></mrow><mrow><mi>s</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>with <span><math><mrow><mi>μ</mi><mo>=</mo><mo>±</mo><mn>1</mn></mrow></math></span>, <span><math><mrow><mi>b</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><mi>s</mi><mo>≥</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>≤</mo><mfrac><mrow><mn>4</mn><mo>−</mo><mn>2</mn><mi>b</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn><mi>s</mi></mrow></mfrac></mrow></math></span> (<span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mi>∞</mi></mrow></math></span> if <span><math><mrow><mi>s</mi><mo>≥</mo><mi>N</mi><mo>/</mo><mn>2</mn></mrow></math></span>). By means of an adapted version of the fractional Leibniz rule, we prove new local well-posedness results in Sobolev spaces for a large range of parameters. We also prove an ill-posedness result for this equation, through a delicate analysis of the associated Duhamel operator.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"85 \",\"pages\":\"Article 104336\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825000227\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825000227","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

考虑非齐次非线性Schrödinger方程的初值问题,iut+Δu+μ|x| - b|u|αu=0,u0∈Hs(RN)或u0∈Ḣs(RN),其中μ=±1,b>0, s≥0和0<;α≤4 - 20 - 2s (0<α<∞,如果s≥N/2)。利用分数莱布尼茨规则的一个改进版本,我们证明了Sobolev空间中对于大范围参数的新的局部适定性结果。通过对相关Duhamel算子的精细分析,我们还证明了该方程的不适定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp well-posedness and ill-posedness results for the inhomogeneous NLS equation
We consider the initial value problem associated to the inhomogeneous nonlinear Schrödinger equation, iut+Δu+μ|x|b|u|αu=0,u0Hs(RN)oru0Ḣs(RN),with μ=±1, b>0, s0 and 0<α42bN2s (0<α< if sN/2). By means of an adapted version of the fractional Leibniz rule, we prove new local well-posedness results in Sobolev spaces for a large range of parameters. We also prove an ill-posedness result for this equation, through a delicate analysis of the associated Duhamel operator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信