{"title":"Campanato类型空间中的分数阶Orlicz-Sobolev嵌入","authors":"Angela Alberico , Andrea Cianchi , Luboš Pick , Lenka Slavíková","doi":"10.1016/j.nonrwa.2025.104455","DOIUrl":null,"url":null,"abstract":"<div><div>Optimal embeddings for fractional Orlicz–Sobolev spaces into (generalized) Campanato spaces on the Euclidean space are exhibited. Embeddings into vanishing Campanato spaces are also characterized. Sharp embeddings into <span><math><mrow><mo>BMO</mo><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mo>VMO</mo><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> are derived as special instances. Dissimilarities to corresponding embeddings for classical fractional Sobolev spaces are pointed out.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104455"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Orlicz–Sobolev embeddings into Campanato type spaces\",\"authors\":\"Angela Alberico , Andrea Cianchi , Luboš Pick , Lenka Slavíková\",\"doi\":\"10.1016/j.nonrwa.2025.104455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Optimal embeddings for fractional Orlicz–Sobolev spaces into (generalized) Campanato spaces on the Euclidean space are exhibited. Embeddings into vanishing Campanato spaces are also characterized. Sharp embeddings into <span><math><mrow><mo>BMO</mo><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mo>VMO</mo><mrow><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></math></span> are derived as special instances. Dissimilarities to corresponding embeddings for classical fractional Sobolev spaces are pointed out.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"87 \",\"pages\":\"Article 104455\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825001415\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001415","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Fractional Orlicz–Sobolev embeddings into Campanato type spaces
Optimal embeddings for fractional Orlicz–Sobolev spaces into (generalized) Campanato spaces on the Euclidean space are exhibited. Embeddings into vanishing Campanato spaces are also characterized. Sharp embeddings into and are derived as special instances. Dissimilarities to corresponding embeddings for classical fractional Sobolev spaces are pointed out.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.