演化方程控制的双曲型Clarke次微分内含体的双步Rothe格式

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Jinxia Cen , Krzysztof Bartosz , Jen-Chih Yao , Shengda Zeng
{"title":"演化方程控制的双曲型Clarke次微分内含体的双步Rothe格式","authors":"Jinxia Cen ,&nbsp;Krzysztof Bartosz ,&nbsp;Jen-Chih Yao ,&nbsp;Shengda Zeng","doi":"10.1016/j.nonrwa.2025.104463","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we deal with a coupled system which consists of a hyperbolic Clarke subdifferential inclusion and an evolution equation in Banach spaces. Using temporally semidiscrete method based on the double step scheme, we construct a discrete approximate system. The existence of solutions and its a-priori estimates for the discrete approximate system are provided by the surjectivity of multivalued pesudomonotone operators and discrete Gronwall’s inequality. Finally, we show that the solution sequence of the discrete approximate system converges weakly to a limit element, which is a solution of the coupled original system.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104463"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A double step Rothe scheme for hyperbolic Clarke subdifferential inclusions controlled by evolution equations\",\"authors\":\"Jinxia Cen ,&nbsp;Krzysztof Bartosz ,&nbsp;Jen-Chih Yao ,&nbsp;Shengda Zeng\",\"doi\":\"10.1016/j.nonrwa.2025.104463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we deal with a coupled system which consists of a hyperbolic Clarke subdifferential inclusion and an evolution equation in Banach spaces. Using temporally semidiscrete method based on the double step scheme, we construct a discrete approximate system. The existence of solutions and its a-priori estimates for the discrete approximate system are provided by the surjectivity of multivalued pesudomonotone operators and discrete Gronwall’s inequality. Finally, we show that the solution sequence of the discrete approximate system converges weakly to a limit element, which is a solution of the coupled original system.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"88 \",\"pages\":\"Article 104463\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S146812182500149X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S146812182500149X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了Banach空间中由双曲型Clarke次微分包含和演化方程组成的耦合系统。利用基于双步格式的时间半离散方法,构造了一个离散近似系统。利用多值伪单调算子的满射性和离散Gronwall不等式,给出了离散近似系统解的存在性及其先验估计。最后,我们证明了离散近似系统的解序列弱收敛于一个极限单元,该极限单元是耦合原始系统的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A double step Rothe scheme for hyperbolic Clarke subdifferential inclusions controlled by evolution equations
In this paper we deal with a coupled system which consists of a hyperbolic Clarke subdifferential inclusion and an evolution equation in Banach spaces. Using temporally semidiscrete method based on the double step scheme, we construct a discrete approximate system. The existence of solutions and its a-priori estimates for the discrete approximate system are provided by the surjectivity of multivalued pesudomonotone operators and discrete Gronwall’s inequality. Finally, we show that the solution sequence of the discrete approximate system converges weakly to a limit element, which is a solution of the coupled original system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信