Daniele Cassani , Camilla Chiara Polvara , Antonio Tarsia
{"title":"Maximum principle for higher order elliptic operators with inertia in general domains and any dimension","authors":"Daniele Cassani , Camilla Chiara Polvara , Antonio Tarsia","doi":"10.1016/j.nonrwa.2025.104465","DOIUrl":null,"url":null,"abstract":"<div><div>It is well known how the Maximum Principle (MP) in general fails to hold for uniformly elliptic operators of order higher than two, even in smooth convex domains. In D. Cassani and A. Tarsia (2022) it was shown in dimension <span><math><mrow><mi>N</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn></mrow></math></span>, by establishing a new Harnack type inequality, that the validity of the positivity preserving property can be restored when lower order derivatives are taken into account as a perturbation of the higher order differential operator. The restriction to the dimension was due to regularity issues which we develop here, extending the validity of the MP to any dimension and fairly general domains. Moreover, we show that the presence of inertial terms affects the range of the perturbation parameter, providing a balance between the positivity restoring effect of lower order derivatives and the mass energy. The method provided here is flexible with respect to the form of differential operators involved and thus suitable to be further extended to other classes of operators than just elliptic.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104465"},"PeriodicalIF":1.8000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001518","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
It is well known how the Maximum Principle (MP) in general fails to hold for uniformly elliptic operators of order higher than two, even in smooth convex domains. In D. Cassani and A. Tarsia (2022) it was shown in dimension , by establishing a new Harnack type inequality, that the validity of the positivity preserving property can be restored when lower order derivatives are taken into account as a perturbation of the higher order differential operator. The restriction to the dimension was due to regularity issues which we develop here, extending the validity of the MP to any dimension and fairly general domains. Moreover, we show that the presence of inertial terms affects the range of the perturbation parameter, providing a balance between the positivity restoring effect of lower order derivatives and the mass energy. The method provided here is flexible with respect to the form of differential operators involved and thus suitable to be further extended to other classes of operators than just elliptic.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.