Nonlinear Analysis-Real World Applications最新文献

筛选
英文 中文
Persistence and zero-Hopf equilibrium in the tritrophic food chain model with Holling functional response 具有霍林功能响应的三营养食物链模型中的持久性和零霍普夫平衡
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-10-19 DOI: 10.1016/j.nonrwa.2024.104232
Víctor Castellanos , Jaume Llibre
{"title":"Persistence and zero-Hopf equilibrium in the tritrophic food chain model with Holling functional response","authors":"Víctor Castellanos ,&nbsp;Jaume Llibre","doi":"10.1016/j.nonrwa.2024.104232","DOIUrl":"10.1016/j.nonrwa.2024.104232","url":null,"abstract":"<div><div>In this paper, we analyze the persistence of three species in a three-level food chain model. We characterize when such a model exhibits a zero-Hopf equilibrium point and show that it is possible only if the functional responses in the model are of type Holling III or IV.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of marine reserve creation in single species and prey–predator models 在单一物种和猎物-食肉动物模型中建立海洋保护区的影响
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-10-10 DOI: 10.1016/j.nonrwa.2024.104230
Aleksander Ćwiszewski , Sławomir Plaskacz
{"title":"Effects of marine reserve creation in single species and prey–predator models","authors":"Aleksander Ćwiszewski ,&nbsp;Sławomir Plaskacz","doi":"10.1016/j.nonrwa.2024.104230","DOIUrl":"10.1016/j.nonrwa.2024.104230","url":null,"abstract":"<div><div>Implementations of marine protected areas (MPA’s) for over-exploited single species fisheries and prey–predator models with environment capacity are studied. The situations when fishing effort reaches the extinction threshold that fits over-exploited open-access fisheries are considered. The discrepancy for single-species and prey–predator models in the context of food security is obtained. Due quantitative indicators for biodiversity and food security are introduced and analyzed.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A simple proof of uniqueness for the nonlocal positive solutions 非局部正解唯一性的简单证明
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-10-10 DOI: 10.1016/j.nonrwa.2024.104233
Ming-Ming Fan, Jian-Wen Sun
{"title":"A simple proof of uniqueness for the nonlocal positive solutions","authors":"Ming-Ming Fan,&nbsp;Jian-Wen Sun","doi":"10.1016/j.nonrwa.2024.104233","DOIUrl":"10.1016/j.nonrwa.2024.104233","url":null,"abstract":"<div><div>In this paper, we prove a general uniqueness result for the positive solution of nonlocal dispersal equations. Our simple and elementary proof simplifies previously known proofs based on eigenvalue theory and solution estimates.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic bifurcation of nonautonomous evolution equations under Landesman–Lazer condition with cohomology methods 兰德斯曼-拉泽尔条件下非自治演化方程的动态分岔与同调方法
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-10-05 DOI: 10.1016/j.nonrwa.2024.104228
Chunqiu Li, Jintao Wang
{"title":"Dynamic bifurcation of nonautonomous evolution equations under Landesman–Lazer condition with cohomology methods","authors":"Chunqiu Li,&nbsp;Jintao Wang","doi":"10.1016/j.nonrwa.2024.104228","DOIUrl":"10.1016/j.nonrwa.2024.104228","url":null,"abstract":"<div><div>In this article we study the dynamic bifurcation of nonautonomous evolution equations by using cohomology methods. First, we construct a homotopy equivalence relation between the nonautonomous system and a product flow. Then, we slightly extend some continuation theorems on bifurcations for autonomous equations, and prove some new cohomology consequences on the reduced singular groups. Based on this homotopy equivalence relation and these conclusions, we establish some typical results on the dynamic bifurcation from infinity of the abstract nonautonomous evolution equation. Finally, we consider the parabolic equation <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>λ</mi><mi>u</mi><mo>+</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> associated with the Dirichlet boundary condition, where <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> satisfies the appropriate Landesman–Lazer type condition. Some new results on the dynamical behaviors of this equation near resonance of the equation are derived.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local Lipschitz continuity for energy integrals with slow growth and lower order terms 具有缓慢增长和低阶项的能量积分的局部 Lipschitz 连续性
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-10-03 DOI: 10.1016/j.nonrwa.2024.104224
Michela Eleuteri , Stefania Perrotta , Giulia Treu
{"title":"Local Lipschitz continuity for energy integrals with slow growth and lower order terms","authors":"Michela Eleuteri ,&nbsp;Stefania Perrotta ,&nbsp;Giulia Treu","doi":"10.1016/j.nonrwa.2024.104224","DOIUrl":"10.1016/j.nonrwa.2024.104224","url":null,"abstract":"<div><div>We consider integral functionals with slow growth and explicit dependence on <span><math><mi>u</mi></math></span> of the Lagrangian; this includes many relevant examples as, for instance, in elastoplastic torsion problems or in image restoration problems. Our aim is to prove that the local minimizers are locally Lipschitz continuous. The proof makes use of recent results concerning the Bounded Slope Conditions.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142423020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New generalization of non-autonomous Bernfeld–Haddock conjecture and its proof 非自治伯恩费尔德-哈道克猜想的新概括及其证明
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-10-01 DOI: 10.1016/j.nonrwa.2024.104226
Chuangxia Huang , Xiaodan Ding
{"title":"New generalization of non-autonomous Bernfeld–Haddock conjecture and its proof","authors":"Chuangxia Huang ,&nbsp;Xiaodan Ding","doi":"10.1016/j.nonrwa.2024.104226","DOIUrl":"10.1016/j.nonrwa.2024.104226","url":null,"abstract":"<div><div>In this paper, the famous Bernfeld–Haddock conjecture is generalized to a broader form combining with a class of non-autonomous delay differential equations. With the help of differential inequality technique and Dini derivative theory, it is proved that each solution of the addressed equations has boundedness and tends to a constant without requiring the delay feedback function to be strictly increasing, which greatly refines and extends the corresponding results in the existing literature. In particular, an explanatory example is performed to substantiate the obtained analytical findings.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bifurcation and dynamics of periodic solutions of MEMS model with squeeze film damping 带挤压膜阻尼的微机电系统模型周期解的分岔与动力学
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-09-27 DOI: 10.1016/j.nonrwa.2024.104229
Shiping Lu , Xingchen Yu , Zhuomo An
{"title":"Bifurcation and dynamics of periodic solutions of MEMS model with squeeze film damping","authors":"Shiping Lu ,&nbsp;Xingchen Yu ,&nbsp;Zhuomo An","doi":"10.1016/j.nonrwa.2024.104229","DOIUrl":"10.1016/j.nonrwa.2024.104229","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In this paper, we study the oscillations of an idealized mass–spring model of micro-electro-mechanical system (MEMS) with squeeze film damping. The model consists of two parallel electrodes separated by a gap &lt;span&gt;&lt;math&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;: one of them is fixed, and another one is movable and attached to a linear spring with stiffness coefficient &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. The oscillation, under the influence of AC–DC voltage &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;cos&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, is ruled by the following singular differential equation &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mrow&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;/mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;′&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;Here, &lt;span&gt;&lt;math&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is the vertical displacement of the moving plate (&lt;span&gt;&lt;math&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is always assumed to be less than &lt;span&gt;&lt;math&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;), &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is its mass, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is the electrode area, and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is the absolute dielectric constant of vacuum. Taking &lt;span&gt;&lt;math&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; as the parameter, we show the existence of saddle–node bifurcation of &lt;span&gt;&lt;math&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-periodic solutions to the equation in the parameter space. This answers, from certain point of view, the open problem proposed by Torres in his monograph, see Torres (2015, Open Problem 2.1, p. 18). Further, we prove that the equation has exactly two classes of &lt;span&gt;&lt;math&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-periodic solutions: as &lt;span&gt;&lt;math&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; tends to &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, one of them uniformly tends t","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a planar equation involving (2,q)-Laplacian with zero mass and Trudinger–Moser nonlinearity 关于涉及零质量和特鲁丁格-莫泽非线性的 (2,q)- 拉普拉斯平面方程
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-09-25 DOI: 10.1016/j.nonrwa.2024.104227
J.A. Cardoso , J.C. de Albuquerque , J. Carvalho , G.M. Figueiredo
{"title":"On a planar equation involving (2,q)-Laplacian with zero mass and Trudinger–Moser nonlinearity","authors":"J.A. Cardoso ,&nbsp;J.C. de Albuquerque ,&nbsp;J. Carvalho ,&nbsp;G.M. Figueiredo","doi":"10.1016/j.nonrwa.2024.104227","DOIUrl":"10.1016/j.nonrwa.2024.104227","url":null,"abstract":"<div><div>In this work, we study existence of positive solutions to a class of <span><math><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></mrow></math></span>-equations in the zero mass case in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. We establish a weighted Sobolev embedding and we introduce a new Trudinger–Moser type inequality. Moreover, since we work on a suitable radial Sobolev space, we prove an appropriate version of the well-known Symmetric Criticality Principle by Palais. Finally, we study regularity of solutions applying Moser iteration scheme.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142318795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Singular non-autonomous (p,q)-equations with competing nonlinearities 具有竞争非线性的奇异非自治 (p,q) -方程
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-09-23 DOI: 10.1016/j.nonrwa.2024.104225
Nikolaos S. Papageorgiou , Dongdong Qin , Vicenţiu D. Rădulescu
{"title":"Singular non-autonomous (p,q)-equations with competing nonlinearities","authors":"Nikolaos S. Papageorgiou ,&nbsp;Dongdong Qin ,&nbsp;Vicenţiu D. Rădulescu","doi":"10.1016/j.nonrwa.2024.104225","DOIUrl":"10.1016/j.nonrwa.2024.104225","url":null,"abstract":"<div><div>We consider a parametric non-autonomous <span><math><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></math></span>-equation with a singular term and competing nonlinearities, a parametric concave term and a Carathéodory perturbation. We consider the cases where the perturbation is <span><math><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-linear and where it is <span><math><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-superlinear (but without the use of the Ambrosetti–Rabinowitz condition). We prove an existence and multiplicity result which is global in the parameter <span><math><mrow><mi>λ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> (a bifurcation type result). Also, we show the existence of a smallest positive solution and show that it is strictly increasing as a function of the parameter. Finally, we examine the set of positive solutions as a function of the parameter (solution multifunction). First, we show that the solution set is compact in <span><math><mrow><msubsup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mrow><mo>(</mo><mover><mrow><mi>Ω</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span> and then we show that the solution multifunction is Vietoris continuous and also Hausdorff continuous as a multifunction of the parameter.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability of inertial manifolds for semilinear parabolic equations under Lipschitz perturbations 半线性抛物方程的惯性流形在 Lipschitz 摄动下的稳定性
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-09-23 DOI: 10.1016/j.nonrwa.2024.104219
Jihoon Lee , Thanhnguyen Nguyen
{"title":"Stability of inertial manifolds for semilinear parabolic equations under Lipschitz perturbations","authors":"Jihoon Lee ,&nbsp;Thanhnguyen Nguyen","doi":"10.1016/j.nonrwa.2024.104219","DOIUrl":"10.1016/j.nonrwa.2024.104219","url":null,"abstract":"<div><div>In this paper we study the stability and continuity of inertial manifolds for semilinear parabolic equations. More precisely, we prove the continuity of inertial manifolds and the Gromov–Hausdorff stability of dynamical systems on inertial manifolds for reaction diffusion equations under Lipschitz perturbations of the domain and equation, using a nontrivial generalization of ODE approach discussed in Romanov (1994).</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":null,"pages":null},"PeriodicalIF":1.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信