Nonlinear Analysis-Real World Applications最新文献

筛选
英文 中文
On the existence of radial solutions to a nonlinear k-Hessian system with gradient term 论带梯度项的非线性 k-Hessian 系统径向解的存在性
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-11-09 DOI: 10.1016/j.nonrwa.2024.104255
Guotao Wang , Zhuobin Zhang , Bashir Ahmad
{"title":"On the existence of radial solutions to a nonlinear k-Hessian system with gradient term","authors":"Guotao Wang ,&nbsp;Zhuobin Zhang ,&nbsp;Bashir Ahmad","doi":"10.1016/j.nonrwa.2024.104255","DOIUrl":"10.1016/j.nonrwa.2024.104255","url":null,"abstract":"<div><div>This paper investigates a nonlinear <span><math><mi>k</mi></math></span>-Hessian system with gradient term by the monotone iterative method. We obtain the existence criteria for the entire positive radial solution. The estimation of the entire positive bounded radial solution is given in the finite case. The existence of the entire positive blow-up radial solution is also presented in the infinite case. Finally, two examples are given to demonstrate the application of the obtained results.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104255"},"PeriodicalIF":1.8,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global existence and boundedness to an N-D chemotaxis-convection model during tumor angiogenesis 肿瘤血管生成过程中 N-D 趋化-对流模型的全局存在性和有界性
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-11-09 DOI: 10.1016/j.nonrwa.2024.104257
Fengxiang Zhao, Jiashan Zheng, Kaiqiang Li
{"title":"Global existence and boundedness to an N-D chemotaxis-convection model during tumor angiogenesis","authors":"Fengxiang Zhao,&nbsp;Jiashan Zheng,&nbsp;Kaiqiang Li","doi":"10.1016/j.nonrwa.2024.104257","DOIUrl":"10.1016/j.nonrwa.2024.104257","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In this paper, we consider the following parabolic–parabolic–elliptic system &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;ξ&lt;/mi&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;on a bounded domain &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;⊂&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;) with smooth boundary &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;∂&lt;/mi&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; are positive constants and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;ξ&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. If one of the following cases holds:&lt;/div&gt;&lt;div&gt;(i) &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;msqrt&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;/mrow&gt;&lt;/msqrt&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;;&lt;/div&gt;&lt;div&gt;(ii) &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, for any &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; or &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, the index &lt;span&gt;&lt;math&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; should be suitably big;&lt;/div&gt;&lt;div&gt;(iii) &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, for any &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;.&lt;/div&gt;&lt;div&gt;Without any restriction on the index &lt;span&gt;&lt;math&gt;&lt;mi&gt;ξ&lt;/m","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104257"},"PeriodicalIF":1.8,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The matching of two Markus-Yamabe piecewise smooth systems in the plane 平面内两个马库斯-山边片断平稳系统的匹配
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-11-09 DOI: 10.1016/j.nonrwa.2024.104254
Denis de Carvalho Braga , Fabio Scalco Dias , Jaume Llibre , Luis Fernando Mello
{"title":"The matching of two Markus-Yamabe piecewise smooth systems in the plane","authors":"Denis de Carvalho Braga ,&nbsp;Fabio Scalco Dias ,&nbsp;Jaume Llibre ,&nbsp;Luis Fernando Mello","doi":"10.1016/j.nonrwa.2024.104254","DOIUrl":"10.1016/j.nonrwa.2024.104254","url":null,"abstract":"<div><div>A Markus-Yamabe vector field is a smooth vector field in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> having only one equilibrium point and such that the spectrum of its Jacobian matrix at any point of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is on the left of the imaginary axis in the complex plane. A vector field is globally asymptotically stable if it has a globally asymptotically stable equilibrium point <span><math><mi>p</mi></math></span>: all the orbits tend to <span><math><mi>p</mi></math></span> in forward time. One of the great results of the Qualitative Theory of Differential Equations establishes that a planar Markus-Yamabe vector field is globally asymptotically stable, but a Markus-Yamabe vector field defined in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, <span><math><mrow><mi>n</mi><mo>⩾</mo><mn>3</mn></mrow></math></span>, does not have in general this property. We prove that planar crossing piecewise smooth vector fields defined in two zones formed by two Markus-Yamabe vector fields sharing the same equilibrium point located on the separation straight line are not necessarily globally asymptotically stable.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104254"},"PeriodicalIF":1.8,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A general theory for the (s,p)-superposition of nonlinear fractional operators 非线性分数算子(s,p)叠加的一般理论
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-11-07 DOI: 10.1016/j.nonrwa.2024.104251
Serena Dipierro, Edoardo Proietti Lippi, Caterina Sportelli, Enrico Valdinoci
{"title":"A general theory for the (s,p)-superposition of nonlinear fractional operators","authors":"Serena Dipierro,&nbsp;Edoardo Proietti Lippi,&nbsp;Caterina Sportelli,&nbsp;Enrico Valdinoci","doi":"10.1016/j.nonrwa.2024.104251","DOIUrl":"10.1016/j.nonrwa.2024.104251","url":null,"abstract":"<div><div>We consider the continuous superposition of operators of the form <span><span><span><math><mrow><msub><mrow><mo>∬</mo></mrow><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mo>×</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>N</mi><mo>)</mo></mrow></mrow></msub><msubsup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mspace></mspace><mi>u</mi><mspace></mspace><mi>d</mi><mi>μ</mi><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><mi>μ</mi></math></span> denotes a signed measure over the set <span><math><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mo>×</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span>, joined to a nonlinearity satisfying a proper subcritical growth. The novelty of the paper relies in the fact that, differently from the existing literature, the superposition occurs in both <span><math><mi>s</mi></math></span> and <span><math><mi>p</mi></math></span>.</div><div>Here we introduce a new framework which is so broad to include, for example, the scenarios of the finite sum of different (in both <span><math><mi>s</mi></math></span> and <span><math><mi>p</mi></math></span>) Laplacians, or of a fractional <span><math><mi>p</mi></math></span>-Laplacian plus a <span><math><mi>p</mi></math></span>-Laplacian, or even combinations involving some fractional Laplacians with the “wrong” sign.</div><div>The development of this new setting comes with two applications, which are related to the Weierstrass Theorem and a Mountain Pass technique. The results obtained contribute to the existing literature with several specific cases of interest.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104251"},"PeriodicalIF":1.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global bounded solution in an attraction repulsion Chemotaxis-Navier-Stokes system with Neumann and Dirichlet boundary conditions 具有新曼和迪里夏特边界条件的吸引排斥趋化-纳维尔-斯托克斯系统中的全局有界解
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-11-06 DOI: 10.1016/j.nonrwa.2024.104247
Luli Xu, Chunlai Mu, Minghua Zhang, Jing Zhang
{"title":"Global bounded solution in an attraction repulsion Chemotaxis-Navier-Stokes system with Neumann and Dirichlet boundary conditions","authors":"Luli Xu,&nbsp;Chunlai Mu,&nbsp;Minghua Zhang,&nbsp;Jing Zhang","doi":"10.1016/j.nonrwa.2024.104247","DOIUrl":"10.1016/j.nonrwa.2024.104247","url":null,"abstract":"<div><div>This paper deals with an attraction–repulsion Chemotaxis-Navier–Stokes system with Dirichlet boundary for the attraction signal and Neumann boundary for the repulsion signal. Based on the work of Winkler (2020) and Wang et al. (2022), by using a series estimates, it is shown that in two dimension the classical solution of the system is globally bounded, under the condition of small initial values <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub></math></span> in the explicit expressions for <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub></math></span> and attraction–repulsion coefficients.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104247"},"PeriodicalIF":1.8,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Threshold value for a quasilinear Keller–Segel chemotaxis system with the intermediate exponent in a bounded domain 在有界域中具有中间指数的准线性凯勒-西格尔趋化系统的阈值
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-11-06 DOI: 10.1016/j.nonrwa.2024.104253
Hua Zhong
{"title":"Threshold value for a quasilinear Keller–Segel chemotaxis system with the intermediate exponent in a bounded domain","authors":"Hua Zhong","doi":"10.1016/j.nonrwa.2024.104253","DOIUrl":"10.1016/j.nonrwa.2024.104253","url":null,"abstract":"&lt;div&gt;&lt;div&gt;We consider a quasilinear chemotaxis model &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; with nonlinear diffusion function &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and chemotactic sensitivity &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; in a bounded domain &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;⊂&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Here the rate &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; grows like &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; as &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;∞&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;τ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;.&lt;/div&gt;&lt;div&gt;It is first shown that there exists a &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; such that if free energy with initial data is suitably small and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;‖&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;M&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mrow&gt;","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104253"},"PeriodicalIF":1.8,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Poincaré bifurcation by perturbing a class of cubic Hamiltonian systems 通过扰动一类立方哈密顿系统的波恩卡列分岔
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-11-05 DOI: 10.1016/j.nonrwa.2024.104246
Yuan Chang, Liqin Zhao, Qiuyi Wang
{"title":"The Poincaré bifurcation by perturbing a class of cubic Hamiltonian systems","authors":"Yuan Chang,&nbsp;Liqin Zhao,&nbsp;Qiuyi Wang","doi":"10.1016/j.nonrwa.2024.104246","DOIUrl":"10.1016/j.nonrwa.2024.104246","url":null,"abstract":"<div><div>This paper studies the Poincaré bifurcation of the planar vector fields <span><math><mrow><mover><mrow><mi>x</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>y</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>+</mo><mi>ɛ</mi><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mover><mrow><mi>y</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mo>−</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>x</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>+</mo><mi>ɛ</mi><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mn>0</mn><mo>&lt;</mo><mrow><mo>|</mo><mi>ɛ</mi><mo>|</mo></mrow><mo>≪</mo><mn>1</mn></mrow></math></span>, <span><span><span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>β</mi><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>a</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>+</mo><mi>b</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>c</mi><msup><mrow><mi>y</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mrow><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msup><mo>,</mo><mspace></mspace><mi>α</mi><mi>β</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span></span></span>with <span><math><mrow><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>≠</mo><mn>0</mn></mrow></math></span>, and <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> are polynomials in <span><math><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></math></span> of the degree <span><math><mi>n</mi></math></span>. The phase portraits of the unperturbed systems with at least one center can be divided into 10 classes by their phase portraits. For general <span><math><mi>n</mi></math></span>, we obtain the upper bound of the number of limit cycles bifurcating from period annuli if the first order Melnikov function is not identically zero. The results are new and some of the results in the literatures are improved.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104246"},"PeriodicalIF":1.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boundedness and stabilization in an indirect pursuit-evasion model with nonlinear signal-dependent diffusion and sensitivity 具有非线性信号扩散和敏感性的间接追逐-逃避模型中的边界性和稳定性
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-11-05 DOI: 10.1016/j.nonrwa.2024.104234
Chuanjia Wan, Pan Zheng
{"title":"Boundedness and stabilization in an indirect pursuit-evasion model with nonlinear signal-dependent diffusion and sensitivity","authors":"Chuanjia Wan,&nbsp;Pan Zheng","doi":"10.1016/j.nonrwa.2024.104234","DOIUrl":"10.1016/j.nonrwa.2024.104234","url":null,"abstract":"&lt;div&gt;&lt;div&gt;This paper deals with an indirect pursuit-evasion model with signal-dependent diffusion and sensitivity &lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mtable&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;ξ&lt;/mi&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;⋅&lt;/mi&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;∇&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mfenced&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;mtr&gt;&lt;mtd&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;Δ&lt;/mi&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mi&gt;ρ&lt;/mi&gt;&lt;mi&gt;z&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;mtd&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mtd&gt;&lt;/mtr&gt;&lt;/mtable&gt;&lt;/mrow&gt;&lt;/mfenced&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;under homogeneous Neumann boundary conditions in a smoothly bounded domain &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Ω&lt;/mi&gt;&lt;mo&gt;⊂&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where the parameters &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;χ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;ξ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;ρ&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104234"},"PeriodicalIF":1.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Higher order asymptotic expansions for the convection–diffusion equation in the Fujita-subcritical case 富士达次临界情况下对流扩散方程的高阶渐近展开式
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-11-05 DOI: 10.1016/j.nonrwa.2024.104249
Ryunosuke Kusaba
{"title":"Higher order asymptotic expansions for the convection–diffusion equation in the Fujita-subcritical case","authors":"Ryunosuke Kusaba","doi":"10.1016/j.nonrwa.2024.104249","DOIUrl":"10.1016/j.nonrwa.2024.104249","url":null,"abstract":"<div><div>This paper is devoted to the asymptotic behavior of global solutions to the convection–diffusion equation in the Fujita-subcritical case. We improve the result by Zuazua (1993) and establish higher order asymptotic expansions with decay estimates of the remainders. We also discuss the optimality for the decay rates of the remainders.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104249"},"PeriodicalIF":1.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the spectral stability of periodic waves of the dispersive systems of modified KdV equations 论修正 KdV 方程分散系统周期波的频谱稳定性
IF 1.8 3区 数学
Nonlinear Analysis-Real World Applications Pub Date : 2024-11-04 DOI: 10.1016/j.nonrwa.2024.104250
Sevdzhan Hakkaev , Kadir Şamdanlı
{"title":"On the spectral stability of periodic waves of the dispersive systems of modified KdV equations","authors":"Sevdzhan Hakkaev ,&nbsp;Kadir Şamdanlı","doi":"10.1016/j.nonrwa.2024.104250","DOIUrl":"10.1016/j.nonrwa.2024.104250","url":null,"abstract":"<div><div>This paper concerns the stability of periodic traveling waves of cnoidal type for the nonlinear dispersive systems. The main objective of the paper is to study their stability with respect to co-periodic perturbations.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104250"},"PeriodicalIF":1.8,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信