{"title":"On the existence of radial solutions to a nonlinear k-Hessian system with gradient term","authors":"Guotao Wang , Zhuobin Zhang , Bashir Ahmad","doi":"10.1016/j.nonrwa.2024.104255","DOIUrl":"10.1016/j.nonrwa.2024.104255","url":null,"abstract":"<div><div>This paper investigates a nonlinear <span><math><mi>k</mi></math></span>-Hessian system with gradient term by the monotone iterative method. We obtain the existence criteria for the entire positive radial solution. The estimation of the entire positive bounded radial solution is given in the finite case. The existence of the entire positive blow-up radial solution is also presented in the infinite case. Finally, two examples are given to demonstrate the application of the obtained results.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104255"},"PeriodicalIF":1.8,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global existence and boundedness to an N-D chemotaxis-convection model during tumor angiogenesis","authors":"Fengxiang Zhao, Jiashan Zheng, Kaiqiang Li","doi":"10.1016/j.nonrwa.2024.104257","DOIUrl":"10.1016/j.nonrwa.2024.104257","url":null,"abstract":"<div><div>In this paper, we consider the following parabolic–parabolic–elliptic system <span><span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>ξ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>u</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>+</mo><mi>a</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>v</mi><mo>∇</mo><mi>w</mi><mo>)</mo></mrow><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>−</mo><mi>w</mi><mo>+</mo><mi>u</mi><mo>,</mo></mtd><mtd></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>on a bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span> (<span><math><mrow><mi>N</mi><mo>≥</mo><mn>1</mn></mrow></math></span>) with smooth boundary <span><math><mrow><mi>∂</mi><mi>Ω</mi></mrow></math></span>, where <span><math><mi>μ</mi></math></span>, <span><math><mi>a</mi></math></span>, <span><math><mi>α</mi></math></span> are positive constants and <span><math><mrow><mi>ξ</mi><mo>∈</mo><mi>R</mi></mrow></math></span>. If one of the following cases holds:</div><div>(i) <span><math><mrow><mi>N</mi><mo>≥</mo><mn>4</mn></mrow></math></span> and <span><math><mrow><mi>α</mi><mo>></mo><mfrac><mrow><mn>4</mn><mi>N</mi><mo>−</mo><mn>4</mn><mo>+</mo><mi>N</mi><msqrt><mrow><mn>2</mn><msup><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>6</mn><mi>N</mi><mo>+</mo><mn>8</mn></mrow></msqrt></mrow><mrow><mn>2</mn><mi>N</mi></mrow></mfrac></mrow></math></span>;</div><div>(ii) <span><math><mrow><mi>N</mi><mo>=</mo><mn>3</mn></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>></mo><mn>2</mn></mrow></math></span>, for any <span><math><mrow><mi>μ</mi><mo>></mo><mn>0</mn></mrow></math></span> or <span><math><mrow><mi>α</mi><mo>=</mo><mn>2</mn></mrow></math></span>, the index <span><math><mi>μ</mi></math></span> should be suitably big;</div><div>(iii) <span><math><mrow><mi>N</mi><mo>=</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, for any <span><math><mrow><mi>μ</mi><mo>></mo><mn>0</mn></mrow></math></span>.</div><div>Without any restriction on the index <span><math><mi>ξ</m","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104257"},"PeriodicalIF":1.8,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Denis de Carvalho Braga , Fabio Scalco Dias , Jaume Llibre , Luis Fernando Mello
{"title":"The matching of two Markus-Yamabe piecewise smooth systems in the plane","authors":"Denis de Carvalho Braga , Fabio Scalco Dias , Jaume Llibre , Luis Fernando Mello","doi":"10.1016/j.nonrwa.2024.104254","DOIUrl":"10.1016/j.nonrwa.2024.104254","url":null,"abstract":"<div><div>A Markus-Yamabe vector field is a smooth vector field in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> having only one equilibrium point and such that the spectrum of its Jacobian matrix at any point of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is on the left of the imaginary axis in the complex plane. A vector field is globally asymptotically stable if it has a globally asymptotically stable equilibrium point <span><math><mi>p</mi></math></span>: all the orbits tend to <span><math><mi>p</mi></math></span> in forward time. One of the great results of the Qualitative Theory of Differential Equations establishes that a planar Markus-Yamabe vector field is globally asymptotically stable, but a Markus-Yamabe vector field defined in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, <span><math><mrow><mi>n</mi><mo>⩾</mo><mn>3</mn></mrow></math></span>, does not have in general this property. We prove that planar crossing piecewise smooth vector fields defined in two zones formed by two Markus-Yamabe vector fields sharing the same equilibrium point located on the separation straight line are not necessarily globally asymptotically stable.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104254"},"PeriodicalIF":1.8,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A general theory for the (s,p)-superposition of nonlinear fractional operators","authors":"Serena Dipierro, Edoardo Proietti Lippi, Caterina Sportelli, Enrico Valdinoci","doi":"10.1016/j.nonrwa.2024.104251","DOIUrl":"10.1016/j.nonrwa.2024.104251","url":null,"abstract":"<div><div>We consider the continuous superposition of operators of the form <span><span><span><math><mrow><msub><mrow><mo>∬</mo></mrow><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mo>×</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>N</mi><mo>)</mo></mrow></mrow></msub><msubsup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mspace></mspace><mi>u</mi><mspace></mspace><mi>d</mi><mi>μ</mi><mrow><mo>(</mo><mi>s</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><mi>μ</mi></math></span> denotes a signed measure over the set <span><math><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mo>×</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span>, joined to a nonlinearity satisfying a proper subcritical growth. The novelty of the paper relies in the fact that, differently from the existing literature, the superposition occurs in both <span><math><mi>s</mi></math></span> and <span><math><mi>p</mi></math></span>.</div><div>Here we introduce a new framework which is so broad to include, for example, the scenarios of the finite sum of different (in both <span><math><mi>s</mi></math></span> and <span><math><mi>p</mi></math></span>) Laplacians, or of a fractional <span><math><mi>p</mi></math></span>-Laplacian plus a <span><math><mi>p</mi></math></span>-Laplacian, or even combinations involving some fractional Laplacians with the “wrong” sign.</div><div>The development of this new setting comes with two applications, which are related to the Weierstrass Theorem and a Mountain Pass technique. The results obtained contribute to the existing literature with several specific cases of interest.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104251"},"PeriodicalIF":1.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global bounded solution in an attraction repulsion Chemotaxis-Navier-Stokes system with Neumann and Dirichlet boundary conditions","authors":"Luli Xu, Chunlai Mu, Minghua Zhang, Jing Zhang","doi":"10.1016/j.nonrwa.2024.104247","DOIUrl":"10.1016/j.nonrwa.2024.104247","url":null,"abstract":"<div><div>This paper deals with an attraction–repulsion Chemotaxis-Navier–Stokes system with Dirichlet boundary for the attraction signal and Neumann boundary for the repulsion signal. Based on the work of Winkler (2020) and Wang et al. (2022), by using a series estimates, it is shown that in two dimension the classical solution of the system is globally bounded, under the condition of small initial values <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub></math></span> in the explicit expressions for <span><math><msub><mrow><mo>‖</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></msub></math></span> and attraction–repulsion coefficients.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104247"},"PeriodicalIF":1.8,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Threshold value for a quasilinear Keller–Segel chemotaxis system with the intermediate exponent in a bounded domain","authors":"Hua Zhong","doi":"10.1016/j.nonrwa.2024.104253","DOIUrl":"10.1016/j.nonrwa.2024.104253","url":null,"abstract":"<div><div>We consider a quasilinear chemotaxis model <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>D</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi><mo>)</mo></mrow><mo>−</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>S</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>,</mo><mi>τ</mi><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mo>,</mo><mspace></mspace></mtd></mtr></mtable></mrow></mfenced></math></span></span></span> with nonlinear diffusion function <span><math><mrow><mi>D</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> and chemotactic sensitivity <span><math><mrow><mi>S</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> in a bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span> <span><math><mrow><mo>(</mo><mi>d</mi><mo>≥</mo><mn>3</mn><mo>)</mo></mrow></math></span>. Here the rate <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>/</mo><mi>S</mi><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow></mrow></math></span> grows like <span><math><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn><mo>−</mo><mi>m</mi></mrow></msup></math></span> with <span><math><mrow><mn>2</mn><mi>d</mi><mo>/</mo><mrow><mo>(</mo><mi>d</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mo><</mo><mi>m</mi><mo><</mo><mn>2</mn><mo>−</mo><mn>2</mn><mo>/</mo><mi>d</mi></mrow></math></span> as <span><math><mrow><mi>s</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, and <span><math><mrow><mi>τ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn></mrow></math></span>.</div><div>It is first shown that there exists a <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo>></mo><mn>0</mn></mrow></math></span> such that if free energy with initial data is suitably small and <span><math><mrow><msubsup><mrow><mo>‖</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mrow><mi>α</mi></mrow></msubsup><msubsup><mrow><mo>‖</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow><mrow><mi>β</mi></mrow></msubsup><mo><</mo><msub><mrow><mi>M</mi></mrow><mrow><mo>∗</mo></mrow></msub></mrow></math></span> with <span><math><mrow><mi>α</mi><mo>=</mo><mn>2</mn><mo>/</mo><mrow>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104253"},"PeriodicalIF":1.8,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Poincaré bifurcation by perturbing a class of cubic Hamiltonian systems","authors":"Yuan Chang, Liqin Zhao, Qiuyi Wang","doi":"10.1016/j.nonrwa.2024.104246","DOIUrl":"10.1016/j.nonrwa.2024.104246","url":null,"abstract":"<div><div>This paper studies the Poincaré bifurcation of the planar vector fields <span><math><mrow><mover><mrow><mi>x</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>y</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>+</mo><mi>ɛ</mi><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mover><mrow><mi>y</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mo>−</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>x</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>+</mo><mi>ɛ</mi><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mn>0</mn><mo><</mo><mrow><mo>|</mo><mi>ɛ</mi><mo>|</mo></mrow><mo>≪</mo><mn>1</mn></mrow></math></span>, <span><span><span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>β</mi><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>a</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>+</mo><mi>b</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>c</mi><msup><mrow><mi>y</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mrow><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msup><mo>,</mo><mspace></mspace><mi>α</mi><mi>β</mi><mo><</mo><mn>0</mn></mrow></math></span></span></span>with <span><math><mrow><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>≠</mo><mn>0</mn></mrow></math></span>, and <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> are polynomials in <span><math><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></math></span> of the degree <span><math><mi>n</mi></math></span>. The phase portraits of the unperturbed systems with at least one center can be divided into 10 classes by their phase portraits. For general <span><math><mi>n</mi></math></span>, we obtain the upper bound of the number of limit cycles bifurcating from period annuli if the first order Melnikov function is not identically zero. The results are new and some of the results in the literatures are improved.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104246"},"PeriodicalIF":1.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Boundedness and stabilization in an indirect pursuit-evasion model with nonlinear signal-dependent diffusion and sensitivity","authors":"Chuanjia Wan, Pan Zheng","doi":"10.1016/j.nonrwa.2024.104234","DOIUrl":"10.1016/j.nonrwa.2024.104234","url":null,"abstract":"<div><div>This paper deals with an indirect pursuit-evasion model with signal-dependent diffusion and sensitivity <span><span><span><math><mfenced><mrow><mtable><mtr><mtd></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mfenced><mrow><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mo>∇</mo><mi>u</mi></mrow></mfenced><mo>−</mo><mi>χ</mi><mo>∇</mo><mi>⋅</mi><mfenced><mrow><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>z</mi><mo>)</mo></mrow><mi>u</mi><mo>∇</mo><mi>z</mi></mrow></mfenced><mo>+</mo><mi>u</mi><mfenced><mrow><mi>α</mi><mi>v</mi><mo>−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi></mrow></mfenced><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>∇</mo><mi>⋅</mi><mfenced><mrow><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>w</mi><mo>)</mo></mrow><mo>∇</mo><mi>v</mi></mrow></mfenced><mo>+</mo><mi>ξ</mi><mo>∇</mo><mi>⋅</mi><mfenced><mrow><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>w</mi><mo>)</mo></mrow><mi>v</mi><mo>∇</mo><mi>w</mi></mrow></mfenced><mo>+</mo><mi>v</mi><mfenced><mrow><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>v</mi><mo>−</mo><mi>u</mi></mrow></mfenced><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>+</mo><mi>β</mi><mi>u</mi><mo>−</mo><mi>γ</mi><mi>w</mi><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><msub><mrow><mi>z</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>z</mi><mo>+</mo><mi>δ</mi><mi>v</mi><mo>−</mo><mi>ρ</mi><mi>z</mi><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>under homogeneous Neumann boundary conditions in a smoothly bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, where the parameters <span><math><mrow><mi>χ</mi><mo>,</mo><mi>ξ</mi><mo>,</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>γ</mi><mo>,</mo><mi>δ</mi><mo>,</mo><mi>ρ</mi><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104234"},"PeriodicalIF":1.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Higher order asymptotic expansions for the convection–diffusion equation in the Fujita-subcritical case","authors":"Ryunosuke Kusaba","doi":"10.1016/j.nonrwa.2024.104249","DOIUrl":"10.1016/j.nonrwa.2024.104249","url":null,"abstract":"<div><div>This paper is devoted to the asymptotic behavior of global solutions to the convection–diffusion equation in the Fujita-subcritical case. We improve the result by Zuazua (1993) and establish higher order asymptotic expansions with decay estimates of the remainders. We also discuss the optimality for the decay rates of the remainders.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104249"},"PeriodicalIF":1.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the spectral stability of periodic waves of the dispersive systems of modified KdV equations","authors":"Sevdzhan Hakkaev , Kadir Şamdanlı","doi":"10.1016/j.nonrwa.2024.104250","DOIUrl":"10.1016/j.nonrwa.2024.104250","url":null,"abstract":"<div><div>This paper concerns the stability of periodic traveling waves of cnoidal type for the nonlinear dispersive systems. The main objective of the paper is to study their stability with respect to co-periodic perturbations.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"82 ","pages":"Article 104250"},"PeriodicalIF":1.8,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}