耦合隐式分数阶受电弓微分方程系统的Hadamard分数阶导数

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
P. Palani , D. Prabu , Seenith Sivasundaram
{"title":"耦合隐式分数阶受电弓微分方程系统的Hadamard分数阶导数","authors":"P. Palani ,&nbsp;D. Prabu ,&nbsp;Seenith Sivasundaram","doi":"10.1016/j.nonrwa.2025.104402","DOIUrl":null,"url":null,"abstract":"<div><div>The purpose of this paper is to investigate the Hadamard fractional derivatives in a set of connected implicit fractional pantograph differential equations (FPDEs). This is a new and complex approach to looking at how these systems change over time. The study uses Banach and Schaefer’s fixed-point theorems to construct unique existence and stability conclusions that give fresh insights into the theoretical framework of fractional calculus in FPDEs. Illustrative examples are provided to demonstrate the applications and validate the theoretical results, underscoring the study’s contribution to advancing analytical methods for FPDEs.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"86 ","pages":"Article 104402"},"PeriodicalIF":1.8000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hadamard fractional derivatives for a system of coupled implicit fractional pantograph differential equations\",\"authors\":\"P. Palani ,&nbsp;D. Prabu ,&nbsp;Seenith Sivasundaram\",\"doi\":\"10.1016/j.nonrwa.2025.104402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The purpose of this paper is to investigate the Hadamard fractional derivatives in a set of connected implicit fractional pantograph differential equations (FPDEs). This is a new and complex approach to looking at how these systems change over time. The study uses Banach and Schaefer’s fixed-point theorems to construct unique existence and stability conclusions that give fresh insights into the theoretical framework of fractional calculus in FPDEs. Illustrative examples are provided to demonstrate the applications and validate the theoretical results, underscoring the study’s contribution to advancing analytical methods for FPDEs.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"86 \",\"pages\":\"Article 104402\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825000884\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825000884","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类连通隐式分数阶受电弓微分方程的Hadamard分数阶导数。这是一种观察这些系统如何随时间变化的新的复杂方法。本研究利用Banach和Schaefer的不动点定理构建了独特的存在性和稳定性结论,为FPDEs分数阶微积分的理论框架提供了新的见解。举例说明了应用和验证理论结果,强调了研究对fpde分析方法的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hadamard fractional derivatives for a system of coupled implicit fractional pantograph differential equations
The purpose of this paper is to investigate the Hadamard fractional derivatives in a set of connected implicit fractional pantograph differential equations (FPDEs). This is a new and complex approach to looking at how these systems change over time. The study uses Banach and Schaefer’s fixed-point theorems to construct unique existence and stability conclusions that give fresh insights into the theoretical framework of fractional calculus in FPDEs. Illustrative examples are provided to demonstrate the applications and validate the theoretical results, underscoring the study’s contribution to advancing analytical methods for FPDEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信