Application of Stieltjes parabolic partial differential equations to the population dynamics of Vespa Velutina

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Iván Area , Francisco J. Fernández , Juan J. Nieto , F. Adrián F. Tojo
{"title":"Application of Stieltjes parabolic partial differential equations to the population dynamics of Vespa Velutina","authors":"Iván Area ,&nbsp;Francisco J. Fernández ,&nbsp;Juan J. Nieto ,&nbsp;F. Adrián F. Tojo","doi":"10.1016/j.nonrwa.2025.104388","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we present a mathematical model based on Stieltjes differential equations to analyze the spread of <em>Vespa Velutina</em>. To this end, we start by defining a zero-dimensional model, which we later generalize to a two-dimensional model with a diagonalizable spatial differential operator. The advantage of considering Stieltjes differential equations lies in the fact that they allow us to naturally handle reproductive impulses due to the hatching of individuals and periods of inactivity resulting from hibernation. Finally, we present some numerical results obtained using real nest position data.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"86 ","pages":"Article 104388"},"PeriodicalIF":1.8000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825000744","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present a mathematical model based on Stieltjes differential equations to analyze the spread of Vespa Velutina. To this end, we start by defining a zero-dimensional model, which we later generalize to a two-dimensional model with a diagonalizable spatial differential operator. The advantage of considering Stieltjes differential equations lies in the fact that they allow us to naturally handle reproductive impulses due to the hatching of individuals and periods of inactivity resulting from hibernation. Finally, we present some numerical results obtained using real nest position data.
Stieltjes抛物型偏微分方程在小叶蝉种群动态中的应用
在这项工作中,我们提出了一个基于Stieltjes微分方程的数学模型来分析Vespa Velutina的传播。为此,我们首先定义一个零维模型,然后用一个可对角化的空间微分算子将其推广到二维模型。考虑Stieltjes微分方程的好处在于,它们允许我们自然地处理由于个体孵化和冬眠导致的不活动时期而产生的生殖冲动。最后给出了利用实际的巢层位置数据得到的一些数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信