Analysis of an inelastic contact problem for the damped wave equation

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Boris Muha , Srđan Trifunović
{"title":"Analysis of an inelastic contact problem for the damped wave equation","authors":"Boris Muha ,&nbsp;Srđan Trifunović","doi":"10.1016/j.nonrwa.2025.104408","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we examine the dynamic behavior of a viscoelastic string oscillating above a rigid obstacle in a one-dimensional setting, accounting for inelastic contact between the string and the obstacle. We construct a global-in-time weak solution to this problem by using an approximation method that incorporates a penalizing repulsive force of the form <span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>ɛ</mi></mrow></mfrac><msub><mrow><mi>χ</mi></mrow><mrow><mrow><mo>{</mo><mi>η</mi><mo>&lt;</mo><mn>0</mn><mo>}</mo></mrow></mrow></msub><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>η</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo></mrow></msup></mrow></math></span>. The weak solution exhibits well-controlled energy dissipation, which occurs exclusively during contact and is concentrated on a set of zero measure, specifically when the string moves downward. Furthermore, the velocity is shown to vanish after contact in a specific weak sense. This model serves as a simplified framework for studying contact problems in fluid–structure interaction contexts.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"86 ","pages":"Article 104408"},"PeriodicalIF":1.8000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S146812182500094X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we examine the dynamic behavior of a viscoelastic string oscillating above a rigid obstacle in a one-dimensional setting, accounting for inelastic contact between the string and the obstacle. We construct a global-in-time weak solution to this problem by using an approximation method that incorporates a penalizing repulsive force of the form 1ɛχ{η<0}(tη). The weak solution exhibits well-controlled energy dissipation, which occurs exclusively during contact and is concentrated on a set of zero measure, specifically when the string moves downward. Furthermore, the velocity is shown to vanish after contact in a specific weak sense. This model serves as a simplified framework for studying contact problems in fluid–structure interaction contexts.
阻尼波动方程的非弹性接触问题分析
在本文中,我们研究了在一维环境下在刚性障碍物上振荡的粘弹性弦的动力学行为,考虑了弦与障碍物之间的非弹性接触。我们使用一种近似方法构造了该问题的全局实时弱解,该近似方法包含了形式为1 ν χ{η<;0}(∂tη)−的惩罚性排斥力。弱溶液表现出良好控制的能量耗散,这种能量耗散只发生在接触过程中,并集中在一组零测量值上,特别是当管柱向下移动时。此外,在特定的弱意义上,速度在接触后消失。该模型为研究流固耦合环境下的接触问题提供了一个简化的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信