具有弱奇异敏感性的趋化生长系统的全局有界性

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Minh Le , Halil Ibrahim Kurt
{"title":"具有弱奇异敏感性的趋化生长系统的全局有界性","authors":"Minh Le ,&nbsp;Halil Ibrahim Kurt","doi":"10.1016/j.nonrwa.2025.104392","DOIUrl":null,"url":null,"abstract":"<div><div>This paper concerns with the following parabolic–elliptic chemotaxis-growth system with weak singular sensitivity <span><span><span>(1)</span><span><math><mrow><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>χ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mfrac><mrow><mi>u</mi></mrow><mrow><msup><mrow><mi>v</mi></mrow><mrow><mi>k</mi></mrow></msup></mrow></mfrac><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>r</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>α</mi><mi>v</mi><mo>+</mo><mi>β</mi><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced><mspace></mspace></mrow></math></span></span></span>under no-flux boundary conditions in a smoothly bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn><mo>,</mo></mrow></math></span> the parameters <span><math><mrow><mi>χ</mi><mo>,</mo><mspace></mspace><mi>r</mi><mo>,</mo><mspace></mspace><mi>μ</mi><mo>,</mo><mspace></mspace><mi>α</mi><mo>,</mo><mspace></mspace><mi>β</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> are positive constants and <span><math><mrow><mi>k</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mo>.</mo></mrow></math></span></div><div>In the past few years, there has been considerable interest in exploring whether logistic kinetics can sufficiently guarantee the global existence and boundedness of classical solutions or prevent finite-time blow-up in various chemotaxis models. In particular, significant results have been reported by numerous authors regarding system Eq. <span><span>(1)</span></span>. For instance, a recent study (Kurt 2025) demonstrated that Eq. <span><span>(1)</span></span> admits a globally bounded classical solution provided that <span><math><mi>μ</mi></math></span> is sufficiently large and <span><math><mrow><mi>k</mi><mo>&lt;</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span> with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn><mo>.</mo></mrow></math></span></div><div>It is then natural to ask whether the boundedness of classical solutions of Eq. <span><span>(1)</span></span> can be established independently of the condition connecting <span><math><mi>k</mi></math></span> and <span><math><mi>n</mi></math></span> or considering a milder condition for <span><math><mi>μ</mi></math></span>. This paper addresses this question by providing an extension of the upper bound for <span><math><mi>k</mi></math></span> and a weaker condition for <span><math><mi>μ</mi></math></span> and proves that for all suitably smooth initial data and any given <span><math><mrow><mi>k</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mo>,</mo></mrow></math></span> Eq. <span><span>(1)</span></span> possesses a globally bounded classical solution if <span><math><mi>μ</mi></math></span> is suitably large such that <span><span><span><math><mrow><mi>μ</mi><mo>&gt;</mo><mfenced><mrow><mtable><mtr><mtd><mi>β</mi><msup><mrow><mi>χ</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>k</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><mo>+</mo><msup><mrow><mn>4</mn></mrow><mrow><mfrac><mrow><mn>2</mn><mo>−</mo><mi>k</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><mi>β</mi><msup><mrow><mrow><mo>(</mo><mi>χ</mi><mi>k</mi><mo>)</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>n</mi><mo>=</mo><mn>3</mn><mo>,</mo></mtd></mtr><mtr><mtd><mi>β</mi><msup><mrow><mi>χ</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><msup><mrow><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow><mrow><mfrac><mrow><mi>k</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><mo>+</mo><mn>2</mn><mi>β</mi><msup><mrow><mrow><mo>(</mo><mi>χ</mi><mi>k</mi><mo>)</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><msup><mrow><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>n</mi><mo>≥</mo><mn>4</mn><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></mrow></math></span></span></span></div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"86 ","pages":"Article 104392"},"PeriodicalIF":1.8000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global boundedness in a chemotaxis-growth system with weak singular sensitivity in any dimensional setting\",\"authors\":\"Minh Le ,&nbsp;Halil Ibrahim Kurt\",\"doi\":\"10.1016/j.nonrwa.2025.104392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper concerns with the following parabolic–elliptic chemotaxis-growth system with weak singular sensitivity <span><span><span>(1)</span><span><math><mrow><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>χ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mfrac><mrow><mi>u</mi></mrow><mrow><msup><mrow><mi>v</mi></mrow><mrow><mi>k</mi></mrow></msup></mrow></mfrac><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>r</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>α</mi><mi>v</mi><mo>+</mo><mi>β</mi><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced><mspace></mspace></mrow></math></span></span></span>under no-flux boundary conditions in a smoothly bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn><mo>,</mo></mrow></math></span> the parameters <span><math><mrow><mi>χ</mi><mo>,</mo><mspace></mspace><mi>r</mi><mo>,</mo><mspace></mspace><mi>μ</mi><mo>,</mo><mspace></mspace><mi>α</mi><mo>,</mo><mspace></mspace><mi>β</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> are positive constants and <span><math><mrow><mi>k</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mo>.</mo></mrow></math></span></div><div>In the past few years, there has been considerable interest in exploring whether logistic kinetics can sufficiently guarantee the global existence and boundedness of classical solutions or prevent finite-time blow-up in various chemotaxis models. In particular, significant results have been reported by numerous authors regarding system Eq. <span><span>(1)</span></span>. For instance, a recent study (Kurt 2025) demonstrated that Eq. <span><span>(1)</span></span> admits a globally bounded classical solution provided that <span><math><mi>μ</mi></math></span> is sufficiently large and <span><math><mrow><mi>k</mi><mo>&lt;</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span> with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn><mo>.</mo></mrow></math></span></div><div>It is then natural to ask whether the boundedness of classical solutions of Eq. <span><span>(1)</span></span> can be established independently of the condition connecting <span><math><mi>k</mi></math></span> and <span><math><mi>n</mi></math></span> or considering a milder condition for <span><math><mi>μ</mi></math></span>. This paper addresses this question by providing an extension of the upper bound for <span><math><mi>k</mi></math></span> and a weaker condition for <span><math><mi>μ</mi></math></span> and proves that for all suitably smooth initial data and any given <span><math><mrow><mi>k</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mo>,</mo></mrow></math></span> Eq. <span><span>(1)</span></span> possesses a globally bounded classical solution if <span><math><mi>μ</mi></math></span> is suitably large such that <span><span><span><math><mrow><mi>μ</mi><mo>&gt;</mo><mfenced><mrow><mtable><mtr><mtd><mi>β</mi><msup><mrow><mi>χ</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>k</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><mo>+</mo><msup><mrow><mn>4</mn></mrow><mrow><mfrac><mrow><mn>2</mn><mo>−</mo><mi>k</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><mi>β</mi><msup><mrow><mrow><mo>(</mo><mi>χ</mi><mi>k</mi><mo>)</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>n</mi><mo>=</mo><mn>3</mn><mo>,</mo></mtd></mtr><mtr><mtd><mi>β</mi><msup><mrow><mi>χ</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><msup><mrow><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow><mrow><mfrac><mrow><mi>k</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><mo>+</mo><mn>2</mn><mi>β</mi><msup><mrow><mrow><mo>(</mo><mi>χ</mi><mi>k</mi><mo>)</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><msup><mrow><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>n</mi><mo>≥</mo><mn>4</mn><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></mrow></math></span></span></span></div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"86 \",\"pages\":\"Article 104392\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825000781\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825000781","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究弱奇异灵敏度(1)ut=Δu−χ∇⋅(uvk∇v)+ru−μu2,x∈Ω,0=Δv−αv+βu,x∈Ω,在光滑有界区域Ω∧Rn中,当n≥3时,参数χ,r,μ,α,β>;0为正常数,k∈(0,1)。在过去的几年中,人们对探索logistic动力学是否能够充分保证经典解的全局存在性和有界性或防止各种趋化性模型的有限时间爆破非常感兴趣。特别是,许多作者报告了关于系统Eq.(1)的重要结果。例如,最近的一项研究(Kurt 2025)证明,当μ足够大且k<;12+1n且n≥2时,Eq.(1)承认一个全局有界的经典解。那么很自然地要问,方程(1)经典解的有界性是否可以独立于连接k和n的条件或考虑μ的较温和的条件而建立。本文给出了k的上界的一个扩展和μ的一个较弱条件,证明了对于所有适当光滑初始数据和任意给定k∈(0,1),如果μ足够大,使得μ>;βχ11−k2k1−k+42−k1−kβ(χk)11−k,n=3,βχ11−kn2k1−k+2β(χk)11−k(2+4n−2)12n11−k,n≥4,则Eq.(1)具有全局有界经典解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global boundedness in a chemotaxis-growth system with weak singular sensitivity in any dimensional setting
This paper concerns with the following parabolic–elliptic chemotaxis-growth system with weak singular sensitivity (1)ut=Δuχ(uvkv)+ruμu2,xΩ,0=Δvαv+βu,xΩ,under no-flux boundary conditions in a smoothly bounded domain ΩRn with n3, the parameters χ,r,μ,α,β>0 are positive constants and k(0,1).
In the past few years, there has been considerable interest in exploring whether logistic kinetics can sufficiently guarantee the global existence and boundedness of classical solutions or prevent finite-time blow-up in various chemotaxis models. In particular, significant results have been reported by numerous authors regarding system Eq. (1). For instance, a recent study (Kurt 2025) demonstrated that Eq. (1) admits a globally bounded classical solution provided that μ is sufficiently large and k<12+1n with n2.
It is then natural to ask whether the boundedness of classical solutions of Eq. (1) can be established independently of the condition connecting k and n or considering a milder condition for μ. This paper addresses this question by providing an extension of the upper bound for k and a weaker condition for μ and proves that for all suitably smooth initial data and any given k(0,1), Eq. (1) possesses a globally bounded classical solution if μ is suitably large such that μ>βχ11k2k1k+42k1kβ(χk)11k,n=3,βχ11kn2k1k+2β(χk)11k(2+4n2)12n11k,n4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信