{"title":"具有弱奇异敏感性的趋化生长系统的全局有界性","authors":"Minh Le , Halil Ibrahim Kurt","doi":"10.1016/j.nonrwa.2025.104392","DOIUrl":null,"url":null,"abstract":"<div><div>This paper concerns with the following parabolic–elliptic chemotaxis-growth system with weak singular sensitivity <span><span><span>(1)</span><span><math><mrow><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>χ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mfrac><mrow><mi>u</mi></mrow><mrow><msup><mrow><mi>v</mi></mrow><mrow><mi>k</mi></mrow></msup></mrow></mfrac><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>r</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>α</mi><mi>v</mi><mo>+</mo><mi>β</mi><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced><mspace></mspace></mrow></math></span></span></span>under no-flux boundary conditions in a smoothly bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn><mo>,</mo></mrow></math></span> the parameters <span><math><mrow><mi>χ</mi><mo>,</mo><mspace></mspace><mi>r</mi><mo>,</mo><mspace></mspace><mi>μ</mi><mo>,</mo><mspace></mspace><mi>α</mi><mo>,</mo><mspace></mspace><mi>β</mi><mo>></mo><mn>0</mn></mrow></math></span> are positive constants and <span><math><mrow><mi>k</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mo>.</mo></mrow></math></span></div><div>In the past few years, there has been considerable interest in exploring whether logistic kinetics can sufficiently guarantee the global existence and boundedness of classical solutions or prevent finite-time blow-up in various chemotaxis models. In particular, significant results have been reported by numerous authors regarding system Eq. <span><span>(1)</span></span>. For instance, a recent study (Kurt 2025) demonstrated that Eq. <span><span>(1)</span></span> admits a globally bounded classical solution provided that <span><math><mi>μ</mi></math></span> is sufficiently large and <span><math><mrow><mi>k</mi><mo><</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span> with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn><mo>.</mo></mrow></math></span></div><div>It is then natural to ask whether the boundedness of classical solutions of Eq. <span><span>(1)</span></span> can be established independently of the condition connecting <span><math><mi>k</mi></math></span> and <span><math><mi>n</mi></math></span> or considering a milder condition for <span><math><mi>μ</mi></math></span>. This paper addresses this question by providing an extension of the upper bound for <span><math><mi>k</mi></math></span> and a weaker condition for <span><math><mi>μ</mi></math></span> and proves that for all suitably smooth initial data and any given <span><math><mrow><mi>k</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mo>,</mo></mrow></math></span> Eq. <span><span>(1)</span></span> possesses a globally bounded classical solution if <span><math><mi>μ</mi></math></span> is suitably large such that <span><span><span><math><mrow><mi>μ</mi><mo>></mo><mfenced><mrow><mtable><mtr><mtd><mi>β</mi><msup><mrow><mi>χ</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>k</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><mo>+</mo><msup><mrow><mn>4</mn></mrow><mrow><mfrac><mrow><mn>2</mn><mo>−</mo><mi>k</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><mi>β</mi><msup><mrow><mrow><mo>(</mo><mi>χ</mi><mi>k</mi><mo>)</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>n</mi><mo>=</mo><mn>3</mn><mo>,</mo></mtd></mtr><mtr><mtd><mi>β</mi><msup><mrow><mi>χ</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><msup><mrow><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow><mrow><mfrac><mrow><mi>k</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><mo>+</mo><mn>2</mn><mi>β</mi><msup><mrow><mrow><mo>(</mo><mi>χ</mi><mi>k</mi><mo>)</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><msup><mrow><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>n</mi><mo>≥</mo><mn>4</mn><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></mrow></math></span></span></span></div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"86 ","pages":"Article 104392"},"PeriodicalIF":1.8000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global boundedness in a chemotaxis-growth system with weak singular sensitivity in any dimensional setting\",\"authors\":\"Minh Le , Halil Ibrahim Kurt\",\"doi\":\"10.1016/j.nonrwa.2025.104392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper concerns with the following parabolic–elliptic chemotaxis-growth system with weak singular sensitivity <span><span><span>(1)</span><span><math><mrow><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>χ</mi><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mfrac><mrow><mi>u</mi></mrow><mrow><msup><mrow><mi>v</mi></mrow><mrow><mi>k</mi></mrow></msup></mrow></mfrac><mo>∇</mo><mi>v</mi><mo>)</mo></mrow><mo>+</mo><mi>r</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>α</mi><mi>v</mi><mo>+</mo><mi>β</mi><mi>u</mi><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced><mspace></mspace></mrow></math></span></span></span>under no-flux boundary conditions in a smoothly bounded domain <span><math><mrow><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn><mo>,</mo></mrow></math></span> the parameters <span><math><mrow><mi>χ</mi><mo>,</mo><mspace></mspace><mi>r</mi><mo>,</mo><mspace></mspace><mi>μ</mi><mo>,</mo><mspace></mspace><mi>α</mi><mo>,</mo><mspace></mspace><mi>β</mi><mo>></mo><mn>0</mn></mrow></math></span> are positive constants and <span><math><mrow><mi>k</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mo>.</mo></mrow></math></span></div><div>In the past few years, there has been considerable interest in exploring whether logistic kinetics can sufficiently guarantee the global existence and boundedness of classical solutions or prevent finite-time blow-up in various chemotaxis models. In particular, significant results have been reported by numerous authors regarding system Eq. <span><span>(1)</span></span>. For instance, a recent study (Kurt 2025) demonstrated that Eq. <span><span>(1)</span></span> admits a globally bounded classical solution provided that <span><math><mi>μ</mi></math></span> is sufficiently large and <span><math><mrow><mi>k</mi><mo><</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></math></span> with <span><math><mrow><mi>n</mi><mo>≥</mo><mn>2</mn><mo>.</mo></mrow></math></span></div><div>It is then natural to ask whether the boundedness of classical solutions of Eq. <span><span>(1)</span></span> can be established independently of the condition connecting <span><math><mi>k</mi></math></span> and <span><math><mi>n</mi></math></span> or considering a milder condition for <span><math><mi>μ</mi></math></span>. This paper addresses this question by providing an extension of the upper bound for <span><math><mi>k</mi></math></span> and a weaker condition for <span><math><mi>μ</mi></math></span> and proves that for all suitably smooth initial data and any given <span><math><mrow><mi>k</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mo>,</mo></mrow></math></span> Eq. <span><span>(1)</span></span> possesses a globally bounded classical solution if <span><math><mi>μ</mi></math></span> is suitably large such that <span><span><span><math><mrow><mi>μ</mi><mo>></mo><mfenced><mrow><mtable><mtr><mtd><mi>β</mi><msup><mrow><mi>χ</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>k</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><mo>+</mo><msup><mrow><mn>4</mn></mrow><mrow><mfrac><mrow><mn>2</mn><mo>−</mo><mi>k</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><mi>β</mi><msup><mrow><mrow><mo>(</mo><mi>χ</mi><mi>k</mi><mo>)</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>n</mi><mo>=</mo><mn>3</mn><mo>,</mo></mtd></mtr><mtr><mtd><mi>β</mi><msup><mrow><mi>χ</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><msup><mrow><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfenced></mrow><mrow><mfrac><mrow><mi>k</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><mo>+</mo><mn>2</mn><mi>β</mi><msup><mrow><mrow><mo>(</mo><mi>χ</mi><mi>k</mi><mo>)</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><msup><mrow><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>k</mi></mrow></mfrac></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace></mtd><mtd><mi>n</mi><mo>≥</mo><mn>4</mn><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></mrow></math></span></span></span></div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"86 \",\"pages\":\"Article 104392\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825000781\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825000781","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Global boundedness in a chemotaxis-growth system with weak singular sensitivity in any dimensional setting
This paper concerns with the following parabolic–elliptic chemotaxis-growth system with weak singular sensitivity (1)under no-flux boundary conditions in a smoothly bounded domain with the parameters are positive constants and
In the past few years, there has been considerable interest in exploring whether logistic kinetics can sufficiently guarantee the global existence and boundedness of classical solutions or prevent finite-time blow-up in various chemotaxis models. In particular, significant results have been reported by numerous authors regarding system Eq. (1). For instance, a recent study (Kurt 2025) demonstrated that Eq. (1) admits a globally bounded classical solution provided that is sufficiently large and with
It is then natural to ask whether the boundedness of classical solutions of Eq. (1) can be established independently of the condition connecting and or considering a milder condition for . This paper addresses this question by providing an extension of the upper bound for and a weaker condition for and proves that for all suitably smooth initial data and any given Eq. (1) possesses a globally bounded classical solution if is suitably large such that
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.