一类具有非局部扩散的多物种非合作系统的入侵波

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Wan-Tong Li, Juan Qiu, Ming-Zhen Xin, Xu-Dong Zhao
{"title":"一类具有非局部扩散的多物种非合作系统的入侵波","authors":"Wan-Tong Li,&nbsp;Juan Qiu,&nbsp;Ming-Zhen Xin,&nbsp;Xu-Dong Zhao","doi":"10.1016/j.nonrwa.2025.104471","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with the invasion waves for a class of multi-species non-cooperative systems with nonlocal dispersal. We first establish a sharp existence result of the weak traveling wave solution connected the semi-trivial equilibrium for a general multi-species nonlocal dispersal system by Schauder’s fixed-point theorem. And then we apply this result to discuss the traveling wave solutions for a disease-transmission model and a predator–prey model respectively, where we prove that the weak traveling wave solutions connect the positive equilibrium with the help of Lyapunov functional. To get the asymptotic behavior of traveling wave solutions at <span><math><mrow><mo>+</mo><mi>∞</mi></mrow></math></span>, we have to overcome the difficulties brought by the nonlocal dispersal and the non-cooperative of systems themselves.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104471"},"PeriodicalIF":1.8000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invasion waves for a class of multi-species non-cooperative systems with nonlocal dispersal\",\"authors\":\"Wan-Tong Li,&nbsp;Juan Qiu,&nbsp;Ming-Zhen Xin,&nbsp;Xu-Dong Zhao\",\"doi\":\"10.1016/j.nonrwa.2025.104471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper is concerned with the invasion waves for a class of multi-species non-cooperative systems with nonlocal dispersal. We first establish a sharp existence result of the weak traveling wave solution connected the semi-trivial equilibrium for a general multi-species nonlocal dispersal system by Schauder’s fixed-point theorem. And then we apply this result to discuss the traveling wave solutions for a disease-transmission model and a predator–prey model respectively, where we prove that the weak traveling wave solutions connect the positive equilibrium with the help of Lyapunov functional. To get the asymptotic behavior of traveling wave solutions at <span><math><mrow><mo>+</mo><mi>∞</mi></mrow></math></span>, we have to overcome the difficulties brought by the nonlocal dispersal and the non-cooperative of systems themselves.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"88 \",\"pages\":\"Article 104471\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825001579\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001579","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究一类具有非局部扩散的多物种非合作系统的入侵波。首先利用Schauder不动点定理,建立了一类一般多物种非局部扩散系统半平凡平衡的弱行波解的尖锐存在性结果。然后应用这一结果分别讨论了疾病传播模型和捕食者-猎物模型的行波解,并利用Lyapunov泛函证明了弱行波解连接了正平衡点。为了得到行波解在+∞处的渐近行为,必须克服系统本身的非局部分散和非合作所带来的困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invasion waves for a class of multi-species non-cooperative systems with nonlocal dispersal
This paper is concerned with the invasion waves for a class of multi-species non-cooperative systems with nonlocal dispersal. We first establish a sharp existence result of the weak traveling wave solution connected the semi-trivial equilibrium for a general multi-species nonlocal dispersal system by Schauder’s fixed-point theorem. And then we apply this result to discuss the traveling wave solutions for a disease-transmission model and a predator–prey model respectively, where we prove that the weak traveling wave solutions connect the positive equilibrium with the help of Lyapunov functional. To get the asymptotic behavior of traveling wave solutions at +, we have to overcome the difficulties brought by the nonlocal dispersal and the non-cooperative of systems themselves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信