{"title":"可压缩Navier-Stokes方程背景扰动的稳定性","authors":"Shijin Deng , Xiaochun Yang","doi":"10.1016/j.nonrwa.2025.104472","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we compare two solutions for the compressible Navier–Stokes equations in dimension <span><math><mrow><mi>n</mi><mo>=</mo><mn>2</mn></mrow></math></span> or 3 where the corresponding initial functions are small perturbations around two nearby background states <span><math><mrow><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>α</mi><mo>=</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow></math></span> respectively. We prove that the difference of those two solutions is continuously dependent on the difference <span><math><mrow><mo>|</mo><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>b</mi></mrow></msub><mo>−</mo><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>a</mi></mrow></msub><mo>|</mo></mrow></math></span> of two background states and also give an optimal asymptotic estimate in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> norm in this comparison setting by the refined Green’s function method and also the refined energy method.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104472"},"PeriodicalIF":1.8000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilities of the background perturbations for compressible Navier–Stokes equations\",\"authors\":\"Shijin Deng , Xiaochun Yang\",\"doi\":\"10.1016/j.nonrwa.2025.104472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we compare two solutions for the compressible Navier–Stokes equations in dimension <span><math><mrow><mi>n</mi><mo>=</mo><mn>2</mn></mrow></math></span> or 3 where the corresponding initial functions are small perturbations around two nearby background states <span><math><mrow><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>α</mi><mo>=</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow></math></span> respectively. We prove that the difference of those two solutions is continuously dependent on the difference <span><math><mrow><mo>|</mo><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>b</mi></mrow></msub><mo>−</mo><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>a</mi></mrow></msub><mo>|</mo></mrow></math></span> of two background states and also give an optimal asymptotic estimate in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> norm in this comparison setting by the refined Green’s function method and also the refined energy method.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"88 \",\"pages\":\"Article 104472\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825001580\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001580","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Stabilities of the background perturbations for compressible Navier–Stokes equations
In this paper, we compare two solutions for the compressible Navier–Stokes equations in dimension or 3 where the corresponding initial functions are small perturbations around two nearby background states respectively. We prove that the difference of those two solutions is continuously dependent on the difference of two background states and also give an optimal asymptotic estimate in norm in this comparison setting by the refined Green’s function method and also the refined energy method.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.