可压缩Navier-Stokes方程背景扰动的稳定性

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Shijin Deng , Xiaochun Yang
{"title":"可压缩Navier-Stokes方程背景扰动的稳定性","authors":"Shijin Deng ,&nbsp;Xiaochun Yang","doi":"10.1016/j.nonrwa.2025.104472","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we compare two solutions for the compressible Navier–Stokes equations in dimension <span><math><mrow><mi>n</mi><mo>=</mo><mn>2</mn></mrow></math></span> or 3 where the corresponding initial functions are small perturbations around two nearby background states <span><math><mrow><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>α</mi><mo>=</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow></math></span> respectively. We prove that the difference of those two solutions is continuously dependent on the difference <span><math><mrow><mo>|</mo><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>b</mi></mrow></msub><mo>−</mo><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>a</mi></mrow></msub><mo>|</mo></mrow></math></span> of two background states and also give an optimal asymptotic estimate in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> norm in this comparison setting by the refined Green’s function method and also the refined energy method.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104472"},"PeriodicalIF":1.8000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilities of the background perturbations for compressible Navier–Stokes equations\",\"authors\":\"Shijin Deng ,&nbsp;Xiaochun Yang\",\"doi\":\"10.1016/j.nonrwa.2025.104472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we compare two solutions for the compressible Navier–Stokes equations in dimension <span><math><mrow><mi>n</mi><mo>=</mo><mn>2</mn></mrow></math></span> or 3 where the corresponding initial functions are small perturbations around two nearby background states <span><math><mrow><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>α</mi><mo>=</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow></math></span> respectively. We prove that the difference of those two solutions is continuously dependent on the difference <span><math><mrow><mo>|</mo><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>b</mi></mrow></msub><mo>−</mo><msub><mrow><mover><mrow><mi>F</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>a</mi></mrow></msub><mo>|</mo></mrow></math></span> of two background states and also give an optimal asymptotic estimate in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> norm in this comparison setting by the refined Green’s function method and also the refined energy method.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"88 \",\"pages\":\"Article 104472\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825001580\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001580","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文比较了n=2或3维可压缩Navier-Stokes方程的两种解,其中对应的初始函数分别是两个邻近背景态F→α(α=a,b)附近的小扰动。我们证明了这两个解的差连续依赖于两个背景状态的差|F→b−F→a|,并利用改进的格林函数法和改进的能量法给出了在这种比较设置下Lp范数的最优渐近估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilities of the background perturbations for compressible Navier–Stokes equations
In this paper, we compare two solutions for the compressible Navier–Stokes equations in dimension n=2 or 3 where the corresponding initial functions are small perturbations around two nearby background states Fα(α=a,b) respectively. We prove that the difference of those two solutions is continuously dependent on the difference |FbFa| of two background states and also give an optimal asymptotic estimate in Lp norm in this comparison setting by the refined Green’s function method and also the refined energy method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信