{"title":"具有摩擦阻尼和对数非线性项的无限记忆波方程的指数稳定性","authors":"Qingqing Peng , Yikan Liu","doi":"10.1016/j.nonrwa.2025.104470","DOIUrl":null,"url":null,"abstract":"<div><div>This article is concerned with the energy decay of an infinite memory wave equation with a logarithmic nonlinear term and a frictional damping term. The problem is formulated in a bounded domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> (<span><math><mrow><mi>d</mi><mo>≥</mo><mn>3</mn></mrow></math></span>) with a smooth boundary, on which we prescribe a mixed boundary condition of the Dirichlet and the acoustic types. We establish an exponential decay result for the energy with a general material density <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> under certain assumptions on the involved coefficients. The proof is based on a contradiction argument, the multiplier method and some microlocal analysis techniques. In addition, if <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> takes a special form, our result even holds without the damping effect, that is, the infinite memory effect alone is strong enough to guarantee the exponential stability of the system.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104470"},"PeriodicalIF":1.8000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential stability for an infinite memory wave equation with frictional damping and logarithmic nonlinear terms\",\"authors\":\"Qingqing Peng , Yikan Liu\",\"doi\":\"10.1016/j.nonrwa.2025.104470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article is concerned with the energy decay of an infinite memory wave equation with a logarithmic nonlinear term and a frictional damping term. The problem is formulated in a bounded domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> (<span><math><mrow><mi>d</mi><mo>≥</mo><mn>3</mn></mrow></math></span>) with a smooth boundary, on which we prescribe a mixed boundary condition of the Dirichlet and the acoustic types. We establish an exponential decay result for the energy with a general material density <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> under certain assumptions on the involved coefficients. The proof is based on a contradiction argument, the multiplier method and some microlocal analysis techniques. In addition, if <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> takes a special form, our result even holds without the damping effect, that is, the infinite memory effect alone is strong enough to guarantee the exponential stability of the system.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"88 \",\"pages\":\"Article 104470\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825001567\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001567","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Exponential stability for an infinite memory wave equation with frictional damping and logarithmic nonlinear terms
This article is concerned with the energy decay of an infinite memory wave equation with a logarithmic nonlinear term and a frictional damping term. The problem is formulated in a bounded domain in () with a smooth boundary, on which we prescribe a mixed boundary condition of the Dirichlet and the acoustic types. We establish an exponential decay result for the energy with a general material density under certain assumptions on the involved coefficients. The proof is based on a contradiction argument, the multiplier method and some microlocal analysis techniques. In addition, if takes a special form, our result even holds without the damping effect, that is, the infinite memory effect alone is strong enough to guarantee the exponential stability of the system.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.