具有摩擦阻尼和对数非线性项的无限记忆波方程的指数稳定性

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Qingqing Peng , Yikan Liu
{"title":"具有摩擦阻尼和对数非线性项的无限记忆波方程的指数稳定性","authors":"Qingqing Peng ,&nbsp;Yikan Liu","doi":"10.1016/j.nonrwa.2025.104470","DOIUrl":null,"url":null,"abstract":"<div><div>This article is concerned with the energy decay of an infinite memory wave equation with a logarithmic nonlinear term and a frictional damping term. The problem is formulated in a bounded domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> (<span><math><mrow><mi>d</mi><mo>≥</mo><mn>3</mn></mrow></math></span>) with a smooth boundary, on which we prescribe a mixed boundary condition of the Dirichlet and the acoustic types. We establish an exponential decay result for the energy with a general material density <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> under certain assumptions on the involved coefficients. The proof is based on a contradiction argument, the multiplier method and some microlocal analysis techniques. In addition, if <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> takes a special form, our result even holds without the damping effect, that is, the infinite memory effect alone is strong enough to guarantee the exponential stability of the system.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104470"},"PeriodicalIF":1.8000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential stability for an infinite memory wave equation with frictional damping and logarithmic nonlinear terms\",\"authors\":\"Qingqing Peng ,&nbsp;Yikan Liu\",\"doi\":\"10.1016/j.nonrwa.2025.104470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article is concerned with the energy decay of an infinite memory wave equation with a logarithmic nonlinear term and a frictional damping term. The problem is formulated in a bounded domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> (<span><math><mrow><mi>d</mi><mo>≥</mo><mn>3</mn></mrow></math></span>) with a smooth boundary, on which we prescribe a mixed boundary condition of the Dirichlet and the acoustic types. We establish an exponential decay result for the energy with a general material density <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> under certain assumptions on the involved coefficients. The proof is based on a contradiction argument, the multiplier method and some microlocal analysis techniques. In addition, if <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> takes a special form, our result even holds without the damping effect, that is, the infinite memory effect alone is strong enough to guarantee the exponential stability of the system.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"88 \",\"pages\":\"Article 104470\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825001567\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001567","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有对数非线性项和摩擦阻尼项的无限记忆波方程的能量衰减问题。在光滑边界的Rd (d≥3)有界区域中,给出了Dirichlet和声学类型的混合边界条件。在有关系数的某些假设下,我们建立了具有一般材料密度ρ(x)的能量的指数衰减结果。该证明是基于一个矛盾论证,乘数法和一些微局部分析技术。此外,如果ρ(x)取特殊形式,我们的结果甚至在没有阻尼效应的情况下成立,即仅无限记忆效应就足以保证系统的指数稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential stability for an infinite memory wave equation with frictional damping and logarithmic nonlinear terms
This article is concerned with the energy decay of an infinite memory wave equation with a logarithmic nonlinear term and a frictional damping term. The problem is formulated in a bounded domain in Rd (d3) with a smooth boundary, on which we prescribe a mixed boundary condition of the Dirichlet and the acoustic types. We establish an exponential decay result for the energy with a general material density ρ(x) under certain assumptions on the involved coefficients. The proof is based on a contradiction argument, the multiplier method and some microlocal analysis techniques. In addition, if ρ(x) takes a special form, our result even holds without the damping effect, that is, the infinite memory effect alone is strong enough to guarantee the exponential stability of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信