Semigroup Forum最新文献

筛选
英文 中文
Finite semigroups and periodic sums systems in $$beta mathbb {N}$$ and their Ramsey theoretic consequences $$beta mathbb {N}$ 中的有限半群和周期和系统及其拉姆齐理论后果
IF 0.7 3区 数学
Semigroup Forum Pub Date : 2024-04-05 DOI: 10.1007/s00233-024-10424-y
Yevhen Zelenyuk
{"title":"Finite semigroups and periodic sums systems in $$beta mathbb {N}$$ and their Ramsey theoretic consequences","authors":"Yevhen Zelenyuk","doi":"10.1007/s00233-024-10424-y","DOIUrl":"https://doi.org/10.1007/s00233-024-10424-y","url":null,"abstract":"<p>Let <span>(m,nge 2)</span> and define <span>(nu :omega rightarrow {0,ldots ,m-1})</span> by <span>(nu (k)equiv kpmod {m})</span>. We construct some new finite semigroups in <span>(beta mathbb {N})</span>, in particular, a semigroup generated by <i>m</i> elements of order <i>n</i> with cardinality <span>(m^n+m^{n-1}+cdots +m)</span>. We also show that, for <span>(nge m)</span>, there is a sequence <span>(p_0,ldots ,p_{m-1})</span> in <span>(beta mathbb {N})</span> such that all sums <span>(sum _{j=i}^{i+k}p_{nu (j)})</span>, where <span>(iin {0,ldots ,m-1})</span> and <span>(kin {0,ldots ,n-1})</span>, are distinct and <span>(sum _{j=i}^{i+n}p_{nu (j)}=sum _{j=i}^{i+n-m}p_{nu (j)})</span> for each <i>i</i>. As consequences we derive some new Ramsey theoretic results. In particular, we show that, for <span>(nge m)</span>, there is a partition <span>({A_{i,k}:(i,k)in {0,ldots ,m-1}times {0,ldots ,n-1}})</span> of <span>(mathbb {N})</span> such that, whenever for each (<i>i</i>, <i>k</i>), <span>(mathscr {B}_{i,k})</span> is a finite partition of <span>(A_{i,k})</span>, there exist <span>(B_{i,k}in mathscr {B}_{i,k})</span> and a sequence <span>((x_j)_{j=0}^infty )</span> such that for every finite sequence <span>(j_0&lt;ldots &lt;j_s)</span> such that <span>(j_{t+1}equiv j_t+1pmod {m})</span> for each <span>(t&lt;s)</span>, one has <span>(x_{j_0}+cdots +x_{j_s}in B_{i_0,k_0})</span>, where <span>(i_0=nu (j_0))</span> and <span>(k_0)</span> is <i>s</i> if <span>(sle n-1)</span> and <span>(n-m+nu (s-n))</span> otherwise.</p>","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":"75 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140577923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Set-theoretical solutions of the pentagon equation on Clifford semigroups 克利福德半群上五边形方程的集合论解
IF 0.7 3区 数学
Semigroup Forum Pub Date : 2024-03-27 DOI: 10.1007/s00233-024-10421-1
Marzia Mazzotta, Vicent Pérez-Calabuig, Paola Stefanelli
{"title":"Set-theoretical solutions of the pentagon equation on Clifford semigroups","authors":"Marzia Mazzotta, Vicent Pérez-Calabuig, Paola Stefanelli","doi":"10.1007/s00233-024-10421-1","DOIUrl":"https://doi.org/10.1007/s00233-024-10421-1","url":null,"abstract":"<p>Given a set-theoretical solution of the pentagon equation <span>(s:Stimes Srightarrow Stimes S)</span> on a set <i>S</i> and writing <span>(s(a, b)=(acdot b,, theta _a(b)))</span>, with <span>(cdot )</span> a binary operation on <i>S</i> and <span>(theta _a)</span> a map from <i>S</i> into itself, for every <span>(ain S)</span>, one naturally obtains that <span>(left( S,,cdot right) )</span> is a semigroup. In this paper, we focus on solutions defined in Clifford semigroups <span>(left( S,,cdot right) )</span> satisfying special properties on the set of all idempotents <span>({{,textrm{E},}}(S))</span>. Into the specific, we provide a complete description of <i>idempotent-invariant solutions</i>, namely, those solutions for which <span>(theta _a)</span> remains invariant in <span>({{,textrm{E},}}(S))</span>, for every <span>(ain S)</span>. Moreover, we construct a family of <i>idempotent-fixed solutions</i>, i.e., those solutions for which <span>(theta _a)</span> fixes every element in <span>({{,textrm{E},}}(S))</span> for every <span>(ain S)</span>, from solutions given on each maximal subgroup of <i>S</i>.</p>","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":"49 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140311020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The natural partial order on semigroups of transformations with restricted range that preserve an equivalence 保留等价性的限定范围变换半群上的自然偏序
IF 0.7 3区 数学
Semigroup Forum Pub Date : 2024-03-27 DOI: 10.1007/s00233-024-10422-0
Kritsada Sangkhanan, Jintana Sanwong
{"title":"The natural partial order on semigroups of transformations with restricted range that preserve an equivalence","authors":"Kritsada Sangkhanan, Jintana Sanwong","doi":"10.1007/s00233-024-10422-0","DOIUrl":"https://doi.org/10.1007/s00233-024-10422-0","url":null,"abstract":"<p>Let <i>Y</i> be a nonempty subset of <i>X</i> and <i>T</i>(<i>X</i>, <i>Y</i>) the set of all functions from <i>X</i> into <i>Y</i>. Then <i>T</i>(<i>X</i>, <i>Y</i>) with composition is a subsemigroup of the full transformation semigroup <i>T</i>(<i>X</i>). Let <i>E</i> be a nontrivial equivalence on <i>X</i>. Define a subsemigroup <span>(T_E(X,Y))</span> of <i>T</i>(<i>X</i>, <i>Y</i>) by </p><span>$$begin{aligned} T_E(X,Y)={alpha in T(X,Y):forall (x,y)in E, (xalpha ,yalpha )in E}. end{aligned}$$</span><p>We study <span>(T_E(X,Y))</span> with the natural partial order and determine when two elements are related under this order. We also give a characterization of compatibility on <span>(T_E(X,Y))</span> and then describe the maximal and minimal elements.</p>","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":"58 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140310940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exponential stability of extensible beams equation with Balakrishnan–Taylor, strong and localized nonlinear damping 具有 Balakrishnan-Taylor、强和局部非线性阻尼的可扩展梁方程的指数稳定性
IF 0.7 3区 数学
Semigroup Forum Pub Date : 2024-03-22 DOI: 10.1007/s00233-024-10419-9
Zayd Hajjej
{"title":"Exponential stability of extensible beams equation with Balakrishnan–Taylor, strong and localized nonlinear damping","authors":"Zayd Hajjej","doi":"10.1007/s00233-024-10419-9","DOIUrl":"https://doi.org/10.1007/s00233-024-10419-9","url":null,"abstract":"<p>We study a nonlinear Cauchy problem modeling the motion of an extensible beam </p><span>$$begin{aligned} vert y_tvert ^{r}y_{tt}{} &amp; {} +gamma Delta ^2 y_{tt}+Delta ^2y-left( a+bvert vert nabla yvert vert ^2+c (nabla y, nabla y_t)right) Delta y{} &amp; {} quad +Delta ^2 y_t+ d(x)h(y_t)+f(y)=0, end{aligned}$$</span><p>in a bounded domain of <span>(mathbb {R}^N)</span>, with clamped boundary conditions in either cases: when <span>(r=gamma =0)</span> or else when <i>r</i> and <span>(gamma )</span> are positive. We prove, in both cases, the existence of solutions and the exponential decay of energy.</p>","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":"12 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140197258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Row-factorization matrices in Arf numerical semigroups and defining ideals Arf 数字半群中的行因子矩阵和定义理想
IF 0.7 3区 数学
Semigroup Forum Pub Date : 2024-03-22 DOI: 10.1007/s00233-024-10416-y
Meral Süer, Mehmet Yeşil
{"title":"Row-factorization matrices in Arf numerical semigroups and defining ideals","authors":"Meral Süer, Mehmet Yeşil","doi":"10.1007/s00233-024-10416-y","DOIUrl":"https://doi.org/10.1007/s00233-024-10416-y","url":null,"abstract":"<p>In this paper, we investigate the row-factorization matrices of Arf numerical semigroups, and we provide the full list of such matrices of certain Arf numerical semigroups. We use the information of row-factorization matrices to detect the generic nature and to find generators of the defining ideals.</p>","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":"19 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140197256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The additively idempotent semiring $$S_7^0$$ is nonfinitely based 可加可幂等分线$$S_7^0$$是非无限基于的
IF 0.7 3区 数学
Semigroup Forum Pub Date : 2024-03-20 DOI: 10.1007/s00233-024-10420-2
Yanan Wu, Miaomiao Ren, Xianzhong Zhao
{"title":"The additively idempotent semiring $$S_7^0$$ is nonfinitely based","authors":"Yanan Wu, Miaomiao Ren, Xianzhong Zhao","doi":"10.1007/s00233-024-10420-2","DOIUrl":"https://doi.org/10.1007/s00233-024-10420-2","url":null,"abstract":"<p>We show that the additively idempotent semiring <span>(S_7^0)</span> has no finite basis for its equational theory. This answers an open problem posed by Jackson et al. (J Algebra 611:211–245, 2022).</p>","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":"27 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140197254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On splittings and integration of almost periodic functions with and without geometry 关于有几何和无几何的几乎周期函数的分裂和积分
IF 0.7 3区 数学
Semigroup Forum Pub Date : 2024-03-19 DOI: 10.1007/s00233-024-10415-z
Christian Budde, Josef Kreulich
{"title":"On splittings and integration of almost periodic functions with and without geometry","authors":"Christian Budde, Josef Kreulich","doi":"10.1007/s00233-024-10415-z","DOIUrl":"https://doi.org/10.1007/s00233-024-10415-z","url":null,"abstract":"<p>Recently, the authors introduced the notion of weighted semigroups which apply to sun-dual semigroups and especially to the translation semigroup on the space of left continuous functions with values in dual spaces. In this article, we will show that it is sufficient that we either assume geometry on the Banach, or an abelian structure on the minimal subgroup to prove almost periodicity. This yields a different approach to the almost periodicity of semigroups and integrals, by extending Basit generalized Kadets result to general groups, to obtain almost periodicity.</p>","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":"23 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140165511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Difference of Hilbert series of homogeneous monoid algebras and their normalizations 同质单元代数的希尔伯特级数差及其归一化
IF 0.7 3区 数学
Semigroup Forum Pub Date : 2024-03-11 DOI: 10.1007/s00233-024-10414-0
{"title":"Difference of Hilbert series of homogeneous monoid algebras and their normalizations","authors":"","doi":"10.1007/s00233-024-10414-0","DOIUrl":"https://doi.org/10.1007/s00233-024-10414-0","url":null,"abstract":"<h3>Abstract</h3> <p>Let <em>Q</em> be an affine monoid, <span> <span>(Bbbk [Q])</span> </span> the associated monoid <span> <span>(Bbbk )</span> </span>-algebra, and <span> <span>(Bbbk [overline{Q}])</span> </span> its normalization, where we let <span> <span>(Bbbk )</span> </span> be a field. We discuss a difference of the Hilbert series of <span> <span>(Bbbk [Q])</span> </span> and <span> <span>(Bbbk [overline{Q}])</span> </span> in the case where <span> <span>(Bbbk [Q])</span> </span> is homogeneous (i.e., standard graded). More precisely, we prove that if <span> <span>(Bbbk [Q])</span> </span> satisfies Serre’s condition <span> <span>((S_2))</span> </span>, then the degree of the <em>h</em>-polynomial of <span> <span>(Bbbk [Q])</span> </span> is always greater than or equal to that of <span> <span>(Bbbk [overline{Q}])</span> </span>. Moreover, we also show counterexamples of this statement if we drop the assumption <span> <span>((S_2))</span> </span>.</p>","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":"71 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140115449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Well-posedness of non-autonomous transport equation on metric graphs 度量图上非自治输运方程的好求性
IF 0.7 3区 数学
Semigroup Forum Pub Date : 2024-03-06 DOI: 10.1007/s00233-024-10417-x
Christian Budde, Marjeta Kramar Fijavž
{"title":"Well-posedness of non-autonomous transport equation on metric graphs","authors":"Christian Budde, Marjeta Kramar Fijavž","doi":"10.1007/s00233-024-10417-x","DOIUrl":"https://doi.org/10.1007/s00233-024-10417-x","url":null,"abstract":"<p>We consider transport processes on metric graphs with time-dependent velocities and show that, under continuity assumption of the velocity coefficients, the corresponding non-autonomous abstract Cauchy problem is well-posed by means of evolution families and evolution semigroups.</p>","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":"121 1 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140045409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combinatorial results for semigroups of orientation-preserving and order-decreasing transformations 保向和阶减变换半群的组合结果
IF 0.7 3区 数学
Semigroup Forum Pub Date : 2024-02-23 DOI: 10.1007/s00233-024-10413-1
{"title":"Combinatorial results for semigroups of orientation-preserving and order-decreasing transformations","authors":"","doi":"10.1007/s00233-024-10413-1","DOIUrl":"https://doi.org/10.1007/s00233-024-10413-1","url":null,"abstract":"<h3>Abstract</h3> <p>Let <span> <span>({{mathscr {O}}{mathscr {P}}{mathscr {D}}}_{n})</span> </span> be the semigroup consisting of all orientation-preserving and order-decreasing full transformations on the finite chain <span> <span>(X_{n}={1&lt;cdots &lt;n})</span> </span>, and let <span> <span>(N({{mathscr {O}}{mathscr {P}}{mathscr {D}}}_{n}))</span> </span> be the subsemigroup consisting of all nilpotent elements of <span> <span>({{mathscr {O}}{mathscr {P}}{mathscr {D}}}_{n})</span> </span>. Moreover, for <span> <span>(1le rle n-1)</span> </span>, let <span> <span>$$begin{aligned} {{mathscr {O}}{mathscr {P}}{mathscr {D}}}(n,r) ={alpha in {{mathscr {O}}{mathscr {P}}{mathscr {D}}}_{n},:, |textrm{im},(alpha )|le r}, end{aligned}$$</span> </span>and let <span> <span>(N({{mathscr {O}}{mathscr {P}}{mathscr {D}}}(n,r)))</span> </span> be the subsemigroup consisting of all nilpotent elements of <span> <span>({{mathscr {O}}{mathscr {P}}{mathscr {D}}}(n,r))</span> </span>. In this paper, we compute the cardinalities of <span> <span>({{mathscr {O}}{mathscr {P}}{mathscr {D}}}_{n})</span> </span>, <span> <span>(N({{mathscr {O}}{mathscr {P}}{mathscr {D}}}_{n}))</span> </span>, <span> <span>({{mathscr {O}}{mathscr {P}}{mathscr {D}}}(n,r))</span> </span> and <span> <span>(N({{mathscr {O}}{mathscr {P}}{mathscr {D}}}(n,r)))</span> </span>, and find their ranks. Moreover, for each idempotent <span> <span>(xi )</span> </span> in <span> <span>({{mathscr {O}}{mathscr {P}}{mathscr {D}}}_{n})</span> </span>, we show that <span> <span>({{mathscr {O}}{mathscr {P}}{mathscr {D}}}_{n}(xi )={ alpha in {{mathscr {O}}{mathscr {P}}{mathscr {D}}}_{n} , alpha ^{m}=xi ,, text{ for } text{ some } ,, min {mathbb {N}} })</span> </span> is the maximal nilpotent subsemigroup of <span> <span>({{mathscr {O}}{mathscr {P}}{mathscr {D}}}_{n})</span> </span> with zero <span> <span>(xi )</span> </span>, and we find its cardinality and rank.</p>","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":"12 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139953366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信