Semigroup Forum最新文献

筛选
英文 中文
The isomorphism problem for ideal class monoids of numerical semigroups 数值半群理想类单体的同构问题
IF 0.7 3区 数学
Semigroup Forum Pub Date : 2024-04-16 DOI: 10.1007/s00233-024-10429-7
P. A. García-Sánchez
{"title":"The isomorphism problem for ideal class monoids of numerical semigroups","authors":"P. A. García-Sánchez","doi":"10.1007/s00233-024-10429-7","DOIUrl":"https://doi.org/10.1007/s00233-024-10429-7","url":null,"abstract":"<p>From any poset isomorphic to the poset of gaps of a numerical semigroup <i>S</i> with the order induced by <i>S</i>, one can recover <i>S</i>. As an application, we prove that two different numerical semigroups cannot have isomorphic posets (with respect to set inclusion) of ideals whose minimum is zero. We also show that given two numerical semigroups <i>S</i> and <i>T</i>, if their ideal class monoids are isomorphic, then <i>S</i> must be equal to <i>T</i>.\u0000</p>","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140615834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lattice isomorphisms of orthodox semigroups with no nontrivial finite subgroups 无非重要有限子群的正统半群的晶格同构
IF 0.7 3区 数学
Semigroup Forum Pub Date : 2024-04-16 DOI: 10.1007/s00233-024-10428-8
Simon M. Goberstein
{"title":"Lattice isomorphisms of orthodox semigroups with no nontrivial finite subgroups","authors":"Simon M. Goberstein","doi":"10.1007/s00233-024-10428-8","DOIUrl":"https://doi.org/10.1007/s00233-024-10428-8","url":null,"abstract":"<p>Two semigroups are lattice isomorphic if their subsemigroup lattices are isomorphic, and a class of semigroups is lattice closed if it contains every semigroup which is lattice isomorphic to some semigroup from that class. An orthodox semigroup is a regular semigroup whose idempotents form a subsemigroup. We prove that the class of all orthodox semigroups having no nontrivial finite subgroups is lattice closed.</p>","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140615836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topological sensitivity for semiflow 半流拓扑敏感性
IF 0.7 3区 数学
Semigroup Forum Pub Date : 2024-04-16 DOI: 10.1007/s00233-024-10425-x
Ali Barzanouni, Somayyeh Jangjooye Shaldehi
{"title":"Topological sensitivity for semiflow","authors":"Ali Barzanouni, Somayyeh Jangjooye Shaldehi","doi":"10.1007/s00233-024-10425-x","DOIUrl":"https://doi.org/10.1007/s00233-024-10425-x","url":null,"abstract":"<p>We give a pointwise version of sensitivity in terms of open covers for a semiflow (<i>T</i>, <i>X</i>) of a topological semigroup <i>T</i> on a Hausdorff space <i>X</i> and call it a Hausdorff sensitive point. If <span>((X, {mathscr {U}}))</span> is a uniform space with topology <span>(tau )</span>, then the definition of Hausdorff sensitivity for <span>((T, (X, tau )))</span> gives a pointwise version of sensitivity in terms of uniformity and we call it a uniformly sensitive point. For a semiflow (<i>T</i>, <i>X</i>) on a compact Hausdorff space <i>X</i>, these notions (i.e. Hausdorff sensitive point and uniformly sensitive point) are equal and they are <i>T</i>-invariant if <i>T</i> is a <i>C</i>-semigroup. They are not preserved by factor maps and subsystems, but behave slightly better with respect to lifting. We give the definition of a topologically equicontinuous pair for a semiflow (<i>T</i>, <i>X</i>) on a topological space <i>X</i> and show that if (<i>T</i>, <i>X</i>) is a topologically equicontinuous pair in (<i>x</i>, <i>y</i>), for all <span>(yin X)</span>, then <span>(overline{Tx}= D_T(x))</span> where </p><span>$$begin{aligned} D_T(x)= bigcap { overline{TU}: text { for all open neighborhoods}, U, text {of}, x }. end{aligned}$$</span><p>We prove for a topologically transitive semiflow (<i>T</i>, <i>X</i>) of a <i>C</i>-semigroup <i>T</i> on a regular space <i>X</i> with a topologically equicontinuous point that the set of topologically equicontinuous points coincides with the set of transitive points. This implies that every minimal semiflow of <i>C</i>-semigroup <i>T</i> on a regular space <i>X</i> with a topologically equicontinuous point is topologically equicontinuous. Moreover, we show that if <i>X</i> is a regular space and (<i>T</i>, <i>X</i>) is not a topologically equicontinuous pair in (<i>x</i>, <i>y</i>), then <i>x</i> is a Hausdorff sensitive point for (<i>T</i>, <i>X</i>). Hence, a minimal semiflow of a <i>C</i>-semigroup <i>T</i> on a regular space <i>X</i> is either topologically equicontinuous or topologically sensitive.\u0000</p>","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140615839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomic density of arithmetical congruence monoids 算术全等单体的原子密度
IF 0.7 3区 数学
Semigroup Forum Pub Date : 2024-04-12 DOI: 10.1007/s00233-024-10426-w
Nils Olsson, Christopher O’Neill, Derek Rawling
{"title":"Atomic density of arithmetical congruence monoids","authors":"Nils Olsson, Christopher O’Neill, Derek Rawling","doi":"10.1007/s00233-024-10426-w","DOIUrl":"https://doi.org/10.1007/s00233-024-10426-w","url":null,"abstract":"<p>Consider the set <span>(M_{a,b} = {n in mathbb {Z}_{ge 1}: n equiv a bmod b} cup {1})</span> for <span>(a, b in mathbb {Z}_{ge 1})</span>. If <span>(a^2 equiv a bmod b)</span>, then <span>(M_{a,b})</span> is closed under multiplication and known as an arithmetic congruence monoid (ACM). A non-unit <span>(n in M_{a,b})</span> is an atom if it cannot be expressed as a product of non-units, and the atomic density of <span>(M_{a,b})</span> is the limiting proportion of elements that are atoms. In this paper, we characterize the atomic density of <span>(M_{a,b})</span> in terms of <i>a</i> and <i>b</i>.\u0000</p>","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140577889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The André–Quillen cohomology of commutative monoids 交换单元的安德烈-奎伦同调
IF 0.7 3区 数学
Semigroup Forum Pub Date : 2024-04-09 DOI: 10.1007/s00233-024-10423-z
Bhavya Agrawalla, Nasief Khlaif, Haynes Miller
{"title":"The André–Quillen cohomology of commutative monoids","authors":"Bhavya Agrawalla, Nasief Khlaif, Haynes Miller","doi":"10.1007/s00233-024-10423-z","DOIUrl":"https://doi.org/10.1007/s00233-024-10423-z","url":null,"abstract":"<p>We observe that Beck modules for a commutative monoid are exactly modules over a graded commutative ring associated to the monoid. Under this identification, the Quillen cohomology of commutative monoids is a special case of the André–Quillen cohomology for graded commutative rings, generalizing a result of Kurdiani and Pirashvili. To verify this we develop the necessary grading formalism. The partial cochain complex developed by Pierre Grillet for computing Quillen cohomology appears as the start of a modification of the Harrison cochain complex suggested by Michael Barr.</p>","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140577793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite semigroups and periodic sums systems in $$beta mathbb {N}$$ and their Ramsey theoretic consequences $$beta mathbb {N}$ 中的有限半群和周期和系统及其拉姆齐理论后果
IF 0.7 3区 数学
Semigroup Forum Pub Date : 2024-04-05 DOI: 10.1007/s00233-024-10424-y
Yevhen Zelenyuk
{"title":"Finite semigroups and periodic sums systems in $$beta mathbb {N}$$ and their Ramsey theoretic consequences","authors":"Yevhen Zelenyuk","doi":"10.1007/s00233-024-10424-y","DOIUrl":"https://doi.org/10.1007/s00233-024-10424-y","url":null,"abstract":"<p>Let <span>(m,nge 2)</span> and define <span>(nu :omega rightarrow {0,ldots ,m-1})</span> by <span>(nu (k)equiv kpmod {m})</span>. We construct some new finite semigroups in <span>(beta mathbb {N})</span>, in particular, a semigroup generated by <i>m</i> elements of order <i>n</i> with cardinality <span>(m^n+m^{n-1}+cdots +m)</span>. We also show that, for <span>(nge m)</span>, there is a sequence <span>(p_0,ldots ,p_{m-1})</span> in <span>(beta mathbb {N})</span> such that all sums <span>(sum _{j=i}^{i+k}p_{nu (j)})</span>, where <span>(iin {0,ldots ,m-1})</span> and <span>(kin {0,ldots ,n-1})</span>, are distinct and <span>(sum _{j=i}^{i+n}p_{nu (j)}=sum _{j=i}^{i+n-m}p_{nu (j)})</span> for each <i>i</i>. As consequences we derive some new Ramsey theoretic results. In particular, we show that, for <span>(nge m)</span>, there is a partition <span>({A_{i,k}:(i,k)in {0,ldots ,m-1}times {0,ldots ,n-1}})</span> of <span>(mathbb {N})</span> such that, whenever for each (<i>i</i>, <i>k</i>), <span>(mathscr {B}_{i,k})</span> is a finite partition of <span>(A_{i,k})</span>, there exist <span>(B_{i,k}in mathscr {B}_{i,k})</span> and a sequence <span>((x_j)_{j=0}^infty )</span> such that for every finite sequence <span>(j_0&lt;ldots &lt;j_s)</span> such that <span>(j_{t+1}equiv j_t+1pmod {m})</span> for each <span>(t&lt;s)</span>, one has <span>(x_{j_0}+cdots +x_{j_s}in B_{i_0,k_0})</span>, where <span>(i_0=nu (j_0))</span> and <span>(k_0)</span> is <i>s</i> if <span>(sle n-1)</span> and <span>(n-m+nu (s-n))</span> otherwise.</p>","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140577923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Set-theoretical solutions of the pentagon equation on Clifford semigroups 克利福德半群上五边形方程的集合论解
IF 0.7 3区 数学
Semigroup Forum Pub Date : 2024-03-27 DOI: 10.1007/s00233-024-10421-1
Marzia Mazzotta, Vicent Pérez-Calabuig, Paola Stefanelli
{"title":"Set-theoretical solutions of the pentagon equation on Clifford semigroups","authors":"Marzia Mazzotta, Vicent Pérez-Calabuig, Paola Stefanelli","doi":"10.1007/s00233-024-10421-1","DOIUrl":"https://doi.org/10.1007/s00233-024-10421-1","url":null,"abstract":"<p>Given a set-theoretical solution of the pentagon equation <span>(s:Stimes Srightarrow Stimes S)</span> on a set <i>S</i> and writing <span>(s(a, b)=(acdot b,, theta _a(b)))</span>, with <span>(cdot )</span> a binary operation on <i>S</i> and <span>(theta _a)</span> a map from <i>S</i> into itself, for every <span>(ain S)</span>, one naturally obtains that <span>(left( S,,cdot right) )</span> is a semigroup. In this paper, we focus on solutions defined in Clifford semigroups <span>(left( S,,cdot right) )</span> satisfying special properties on the set of all idempotents <span>({{,textrm{E},}}(S))</span>. Into the specific, we provide a complete description of <i>idempotent-invariant solutions</i>, namely, those solutions for which <span>(theta _a)</span> remains invariant in <span>({{,textrm{E},}}(S))</span>, for every <span>(ain S)</span>. Moreover, we construct a family of <i>idempotent-fixed solutions</i>, i.e., those solutions for which <span>(theta _a)</span> fixes every element in <span>({{,textrm{E},}}(S))</span> for every <span>(ain S)</span>, from solutions given on each maximal subgroup of <i>S</i>.</p>","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140311020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The natural partial order on semigroups of transformations with restricted range that preserve an equivalence 保留等价性的限定范围变换半群上的自然偏序
IF 0.7 3区 数学
Semigroup Forum Pub Date : 2024-03-27 DOI: 10.1007/s00233-024-10422-0
Kritsada Sangkhanan, Jintana Sanwong
{"title":"The natural partial order on semigroups of transformations with restricted range that preserve an equivalence","authors":"Kritsada Sangkhanan, Jintana Sanwong","doi":"10.1007/s00233-024-10422-0","DOIUrl":"https://doi.org/10.1007/s00233-024-10422-0","url":null,"abstract":"<p>Let <i>Y</i> be a nonempty subset of <i>X</i> and <i>T</i>(<i>X</i>, <i>Y</i>) the set of all functions from <i>X</i> into <i>Y</i>. Then <i>T</i>(<i>X</i>, <i>Y</i>) with composition is a subsemigroup of the full transformation semigroup <i>T</i>(<i>X</i>). Let <i>E</i> be a nontrivial equivalence on <i>X</i>. Define a subsemigroup <span>(T_E(X,Y))</span> of <i>T</i>(<i>X</i>, <i>Y</i>) by </p><span>$$begin{aligned} T_E(X,Y)={alpha in T(X,Y):forall (x,y)in E, (xalpha ,yalpha )in E}. end{aligned}$$</span><p>We study <span>(T_E(X,Y))</span> with the natural partial order and determine when two elements are related under this order. We also give a characterization of compatibility on <span>(T_E(X,Y))</span> and then describe the maximal and minimal elements.</p>","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140310940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exponential stability of extensible beams equation with Balakrishnan–Taylor, strong and localized nonlinear damping 具有 Balakrishnan-Taylor、强和局部非线性阻尼的可扩展梁方程的指数稳定性
IF 0.7 3区 数学
Semigroup Forum Pub Date : 2024-03-22 DOI: 10.1007/s00233-024-10419-9
Zayd Hajjej
{"title":"Exponential stability of extensible beams equation with Balakrishnan–Taylor, strong and localized nonlinear damping","authors":"Zayd Hajjej","doi":"10.1007/s00233-024-10419-9","DOIUrl":"https://doi.org/10.1007/s00233-024-10419-9","url":null,"abstract":"<p>We study a nonlinear Cauchy problem modeling the motion of an extensible beam </p><span>$$begin{aligned} vert y_tvert ^{r}y_{tt}{} &amp; {} +gamma Delta ^2 y_{tt}+Delta ^2y-left( a+bvert vert nabla yvert vert ^2+c (nabla y, nabla y_t)right) Delta y{} &amp; {} quad +Delta ^2 y_t+ d(x)h(y_t)+f(y)=0, end{aligned}$$</span><p>in a bounded domain of <span>(mathbb {R}^N)</span>, with clamped boundary conditions in either cases: when <span>(r=gamma =0)</span> or else when <i>r</i> and <span>(gamma )</span> are positive. We prove, in both cases, the existence of solutions and the exponential decay of energy.</p>","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140197258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Row-factorization matrices in Arf numerical semigroups and defining ideals Arf 数字半群中的行因子矩阵和定义理想
IF 0.7 3区 数学
Semigroup Forum Pub Date : 2024-03-22 DOI: 10.1007/s00233-024-10416-y
Meral Süer, Mehmet Yeşil
{"title":"Row-factorization matrices in Arf numerical semigroups and defining ideals","authors":"Meral Süer, Mehmet Yeşil","doi":"10.1007/s00233-024-10416-y","DOIUrl":"https://doi.org/10.1007/s00233-024-10416-y","url":null,"abstract":"<p>In this paper, we investigate the row-factorization matrices of Arf numerical semigroups, and we provide the full list of such matrices of certain Arf numerical semigroups. We use the information of row-factorization matrices to detect the generic nature and to find generators of the defining ideals.</p>","PeriodicalId":49549,"journal":{"name":"Semigroup Forum","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140197256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信