保向和阶减变换半群的组合结果

Pub Date : 2024-02-23 DOI:10.1007/s00233-024-10413-1
{"title":"保向和阶减变换半群的组合结果","authors":"","doi":"10.1007/s00233-024-10413-1","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Let <span> <span>\\({{\\mathscr {O}}{\\mathscr {P}}{\\mathscr {D}}}_{n}\\)</span> </span> be the semigroup consisting of all orientation-preserving and order-decreasing full transformations on the finite chain <span> <span>\\(X_{n}=\\{1&lt;\\cdots &lt;n\\}\\)</span> </span>, and let <span> <span>\\(N({{\\mathscr {O}}{\\mathscr {P}}{\\mathscr {D}}}_{n})\\)</span> </span> be the subsemigroup consisting of all nilpotent elements of <span> <span>\\({{\\mathscr {O}}{\\mathscr {P}}{\\mathscr {D}}}_{n}\\)</span> </span>. Moreover, for <span> <span>\\(1\\le r\\le n-1\\)</span> </span>, let <span> <span>$$\\begin{aligned} {{\\mathscr {O}}{\\mathscr {P}}{\\mathscr {D}}}(n,r) =\\{\\alpha \\in {{\\mathscr {O}}{\\mathscr {P}}{\\mathscr {D}}}_{n}\\,:\\, |\\textrm{im}\\,(\\alpha )|\\le r\\}, \\end{aligned}$$</span> </span>and let <span> <span>\\(N({{\\mathscr {O}}{\\mathscr {P}}{\\mathscr {D}}}(n,r))\\)</span> </span> be the subsemigroup consisting of all nilpotent elements of <span> <span>\\({{\\mathscr {O}}{\\mathscr {P}}{\\mathscr {D}}}(n,r)\\)</span> </span>. In this paper, we compute the cardinalities of <span> <span>\\({{\\mathscr {O}}{\\mathscr {P}}{\\mathscr {D}}}_{n}\\)</span> </span>, <span> <span>\\(N({{\\mathscr {O}}{\\mathscr {P}}{\\mathscr {D}}}_{n})\\)</span> </span>, <span> <span>\\({{\\mathscr {O}}{\\mathscr {P}}{\\mathscr {D}}}(n,r)\\)</span> </span> and <span> <span>\\(N({{\\mathscr {O}}{\\mathscr {P}}{\\mathscr {D}}}(n,r))\\)</span> </span>, and find their ranks. Moreover, for each idempotent <span> <span>\\(\\xi \\)</span> </span> in <span> <span>\\({{\\mathscr {O}}{\\mathscr {P}}{\\mathscr {D}}}_{n}\\)</span> </span>, we show that <span> <span>\\({{\\mathscr {O}}{\\mathscr {P}}{\\mathscr {D}}}_{n}(\\xi )=\\{\\ \\alpha \\in {{\\mathscr {O}}{\\mathscr {P}}{\\mathscr {D}}}_{n} \\,\\ \\alpha ^{m}=\\xi \\,\\, \\text{ for } \\text{ some } \\,\\, m\\in {\\mathbb {N}}\\ \\}\\)</span> </span> is the maximal nilpotent subsemigroup of <span> <span>\\({{\\mathscr {O}}{\\mathscr {P}}{\\mathscr {D}}}_{n}\\)</span> </span> with zero <span> <span>\\(\\xi \\)</span> </span>, and we find its cardinality and rank.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combinatorial results for semigroups of orientation-preserving and order-decreasing transformations\",\"authors\":\"\",\"doi\":\"10.1007/s00233-024-10413-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Let <span> <span>\\\\({{\\\\mathscr {O}}{\\\\mathscr {P}}{\\\\mathscr {D}}}_{n}\\\\)</span> </span> be the semigroup consisting of all orientation-preserving and order-decreasing full transformations on the finite chain <span> <span>\\\\(X_{n}=\\\\{1&lt;\\\\cdots &lt;n\\\\}\\\\)</span> </span>, and let <span> <span>\\\\(N({{\\\\mathscr {O}}{\\\\mathscr {P}}{\\\\mathscr {D}}}_{n})\\\\)</span> </span> be the subsemigroup consisting of all nilpotent elements of <span> <span>\\\\({{\\\\mathscr {O}}{\\\\mathscr {P}}{\\\\mathscr {D}}}_{n}\\\\)</span> </span>. Moreover, for <span> <span>\\\\(1\\\\le r\\\\le n-1\\\\)</span> </span>, let <span> <span>$$\\\\begin{aligned} {{\\\\mathscr {O}}{\\\\mathscr {P}}{\\\\mathscr {D}}}(n,r) =\\\\{\\\\alpha \\\\in {{\\\\mathscr {O}}{\\\\mathscr {P}}{\\\\mathscr {D}}}_{n}\\\\,:\\\\, |\\\\textrm{im}\\\\,(\\\\alpha )|\\\\le r\\\\}, \\\\end{aligned}$$</span> </span>and let <span> <span>\\\\(N({{\\\\mathscr {O}}{\\\\mathscr {P}}{\\\\mathscr {D}}}(n,r))\\\\)</span> </span> be the subsemigroup consisting of all nilpotent elements of <span> <span>\\\\({{\\\\mathscr {O}}{\\\\mathscr {P}}{\\\\mathscr {D}}}(n,r)\\\\)</span> </span>. In this paper, we compute the cardinalities of <span> <span>\\\\({{\\\\mathscr {O}}{\\\\mathscr {P}}{\\\\mathscr {D}}}_{n}\\\\)</span> </span>, <span> <span>\\\\(N({{\\\\mathscr {O}}{\\\\mathscr {P}}{\\\\mathscr {D}}}_{n})\\\\)</span> </span>, <span> <span>\\\\({{\\\\mathscr {O}}{\\\\mathscr {P}}{\\\\mathscr {D}}}(n,r)\\\\)</span> </span> and <span> <span>\\\\(N({{\\\\mathscr {O}}{\\\\mathscr {P}}{\\\\mathscr {D}}}(n,r))\\\\)</span> </span>, and find their ranks. Moreover, for each idempotent <span> <span>\\\\(\\\\xi \\\\)</span> </span> in <span> <span>\\\\({{\\\\mathscr {O}}{\\\\mathscr {P}}{\\\\mathscr {D}}}_{n}\\\\)</span> </span>, we show that <span> <span>\\\\({{\\\\mathscr {O}}{\\\\mathscr {P}}{\\\\mathscr {D}}}_{n}(\\\\xi )=\\\\{\\\\ \\\\alpha \\\\in {{\\\\mathscr {O}}{\\\\mathscr {P}}{\\\\mathscr {D}}}_{n} \\\\,\\\\ \\\\alpha ^{m}=\\\\xi \\\\,\\\\, \\\\text{ for } \\\\text{ some } \\\\,\\\\, m\\\\in {\\\\mathbb {N}}\\\\ \\\\}\\\\)</span> </span> is the maximal nilpotent subsemigroup of <span> <span>\\\\({{\\\\mathscr {O}}{\\\\mathscr {P}}{\\\\mathscr {D}}}_{n}\\\\)</span> </span> with zero <span> <span>\\\\(\\\\xi \\\\)</span> </span>, and we find its cardinality and rank.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-024-10413-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10413-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Abstract Let \({{\mathscr {O}}{\mathscr {P}}{mathscr {D}}_{n}\) be the semigroup consisting of all orientation-preserving and order-decreasing full transformations on the finite chain \(X_{n}=\{1<;\让 \(N({{\mathscr {O}}{{\mathscr {P}}{\mathscr {D}}_{n})\) 是由\({{ \mathscr {O}}{{\mathscr {P}}{\mathscr {D}}}_{n}\) 的所有无效元素组成的子半群。此外,对于 (1嘞 r嘞 n-1) ,让 $$\begin{aligned} {{mathscr {O}}{{mathscr {P}{\mathscr {D}}(n,r) =\{alpha \in {{mathscr {O}}{{mathscr {P}{\mathscr {D}}}_{n}\,:|textrm{im}\,(α )|\le r\}, \end{aligned}$$ 并且让(N({{mathscr {O}}{{mathscr {P}{\mathscr {D}}(n、r))\) 是由\({{/mathscr {O}}{mathscr {P}}{mathscr {D}}(n,r)\) 的所有零能元素组成的子半群。在本文中,我们计算了 \({{\mathscr {O}}{{mathscr {P}}{{\mathscr {D}}}_{n}\) , \(N({{\mathscr {O}}{{mathscr {P}}{\mathscr {D}}}_{n})\ 的万有性。), \({{\mathscr {O}}{{mathscr {P}}{mathscr {D}}(n,r)\) and\(N({{\mathscr {O}}{{mathscr {P}}{mathscr {D}}(n,r))\)并找出它们的秩。此外,对于 \({{\mathscr {O}}{{\mathscr {P}}{\mathscr {D}}}_{n}\) 中的每个empempent \(\xi \) 、我们证明\({\mathscr {O}}{\mathscr {P}}{\mathscr {D}}{n}(\xi )=\{ α \in {{\mathscr {O}}{\mathscr {P}}{\mathscr {D}}}_{n})\alpha ^{m}=\xi \,\, \text{ for }\(text{ some }\,\, m\in {\mathbb {N}}\\}) 是 \({{\mathscr {O}}\{mathscr {P}}{{mathscr {D}}}_{n}\) 的最大无幂子半群,它的 \(\xi \) 为零,我们可以找到它的心数和秩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Combinatorial results for semigroups of orientation-preserving and order-decreasing transformations

Abstract

Let \({{\mathscr {O}}{\mathscr {P}}{\mathscr {D}}}_{n}\) be the semigroup consisting of all orientation-preserving and order-decreasing full transformations on the finite chain \(X_{n}=\{1<\cdots <n\}\) , and let \(N({{\mathscr {O}}{\mathscr {P}}{\mathscr {D}}}_{n})\) be the subsemigroup consisting of all nilpotent elements of \({{\mathscr {O}}{\mathscr {P}}{\mathscr {D}}}_{n}\) . Moreover, for \(1\le r\le n-1\) , let $$\begin{aligned} {{\mathscr {O}}{\mathscr {P}}{\mathscr {D}}}(n,r) =\{\alpha \in {{\mathscr {O}}{\mathscr {P}}{\mathscr {D}}}_{n}\,:\, |\textrm{im}\,(\alpha )|\le r\}, \end{aligned}$$ and let \(N({{\mathscr {O}}{\mathscr {P}}{\mathscr {D}}}(n,r))\) be the subsemigroup consisting of all nilpotent elements of \({{\mathscr {O}}{\mathscr {P}}{\mathscr {D}}}(n,r)\) . In this paper, we compute the cardinalities of \({{\mathscr {O}}{\mathscr {P}}{\mathscr {D}}}_{n}\) , \(N({{\mathscr {O}}{\mathscr {P}}{\mathscr {D}}}_{n})\) , \({{\mathscr {O}}{\mathscr {P}}{\mathscr {D}}}(n,r)\) and \(N({{\mathscr {O}}{\mathscr {P}}{\mathscr {D}}}(n,r))\) , and find their ranks. Moreover, for each idempotent \(\xi \) in \({{\mathscr {O}}{\mathscr {P}}{\mathscr {D}}}_{n}\) , we show that \({{\mathscr {O}}{\mathscr {P}}{\mathscr {D}}}_{n}(\xi )=\{\ \alpha \in {{\mathscr {O}}{\mathscr {P}}{\mathscr {D}}}_{n} \,\ \alpha ^{m}=\xi \,\, \text{ for } \text{ some } \,\, m\in {\mathbb {N}}\ \}\) is the maximal nilpotent subsemigroup of \({{\mathscr {O}}{\mathscr {P}}{\mathscr {D}}}_{n}\) with zero \(\xi \) , and we find its cardinality and rank.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信