同质单元代数的希尔伯特级数差及其归一化

Pub Date : 2024-03-11 DOI:10.1007/s00233-024-10414-0
{"title":"同质单元代数的希尔伯特级数差及其归一化","authors":"","doi":"10.1007/s00233-024-10414-0","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Let <em>Q</em> be an affine monoid, <span> <span>\\(\\Bbbk [Q]\\)</span> </span> the associated monoid <span> <span>\\(\\Bbbk \\)</span> </span>-algebra, and <span> <span>\\(\\Bbbk [\\overline{Q}]\\)</span> </span> its normalization, where we let <span> <span>\\(\\Bbbk \\)</span> </span> be a field. We discuss a difference of the Hilbert series of <span> <span>\\(\\Bbbk [Q]\\)</span> </span> and <span> <span>\\(\\Bbbk [\\overline{Q}]\\)</span> </span> in the case where <span> <span>\\(\\Bbbk [Q]\\)</span> </span> is homogeneous (i.e., standard graded). More precisely, we prove that if <span> <span>\\(\\Bbbk [Q]\\)</span> </span> satisfies Serre’s condition <span> <span>\\((S_2)\\)</span> </span>, then the degree of the <em>h</em>-polynomial of <span> <span>\\(\\Bbbk [Q]\\)</span> </span> is always greater than or equal to that of <span> <span>\\(\\Bbbk [\\overline{Q}]\\)</span> </span>. Moreover, we also show counterexamples of this statement if we drop the assumption <span> <span>\\((S_2)\\)</span> </span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Difference of Hilbert series of homogeneous monoid algebras and their normalizations\",\"authors\":\"\",\"doi\":\"10.1007/s00233-024-10414-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Let <em>Q</em> be an affine monoid, <span> <span>\\\\(\\\\Bbbk [Q]\\\\)</span> </span> the associated monoid <span> <span>\\\\(\\\\Bbbk \\\\)</span> </span>-algebra, and <span> <span>\\\\(\\\\Bbbk [\\\\overline{Q}]\\\\)</span> </span> its normalization, where we let <span> <span>\\\\(\\\\Bbbk \\\\)</span> </span> be a field. We discuss a difference of the Hilbert series of <span> <span>\\\\(\\\\Bbbk [Q]\\\\)</span> </span> and <span> <span>\\\\(\\\\Bbbk [\\\\overline{Q}]\\\\)</span> </span> in the case where <span> <span>\\\\(\\\\Bbbk [Q]\\\\)</span> </span> is homogeneous (i.e., standard graded). More precisely, we prove that if <span> <span>\\\\(\\\\Bbbk [Q]\\\\)</span> </span> satisfies Serre’s condition <span> <span>\\\\((S_2)\\\\)</span> </span>, then the degree of the <em>h</em>-polynomial of <span> <span>\\\\(\\\\Bbbk [Q]\\\\)</span> </span> is always greater than or equal to that of <span> <span>\\\\(\\\\Bbbk [\\\\overline{Q}]\\\\)</span> </span>. Moreover, we also show counterexamples of this statement if we drop the assumption <span> <span>\\\\((S_2)\\\\)</span> </span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-024-10414-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10414-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Abstract 让 Q 是一个仿射单元,\(\Bbbk [Q]\) 是相关的单元 \(\Bbbk \) -代数,而 \(\Bbbk [\overline{Q}]\) 是它的归一化,这里我们让 \(\Bbbk \) 是一个域。我们讨论了在\(\Bbbk [Q]\) 是同质(即标准分级)的情况下,\(\Bbbk [Q]\) 和\(\Bbbk [\overline{Q}]\) 的希尔伯特序列的区别。更准确地说,我们证明如果 \(\Bbbk [Q]\) 满足塞尔条件 \((S_2)\)那么 \(\Bbbk [Q]\) 的 h-polynomial 的度总是大于或等于 \(\Bbbk [\overline{Q}]\) 的。此外,如果我们放弃假设 \((S_2)\) ,我们也会展示这一声明的反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Difference of Hilbert series of homogeneous monoid algebras and their normalizations

Abstract

Let Q be an affine monoid, \(\Bbbk [Q]\) the associated monoid \(\Bbbk \) -algebra, and \(\Bbbk [\overline{Q}]\) its normalization, where we let \(\Bbbk \) be a field. We discuss a difference of the Hilbert series of \(\Bbbk [Q]\) and \(\Bbbk [\overline{Q}]\) in the case where \(\Bbbk [Q]\) is homogeneous (i.e., standard graded). More precisely, we prove that if \(\Bbbk [Q]\) satisfies Serre’s condition \((S_2)\) , then the degree of the h-polynomial of \(\Bbbk [Q]\) is always greater than or equal to that of \(\Bbbk [\overline{Q}]\) . Moreover, we also show counterexamples of this statement if we drop the assumption \((S_2)\) .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信