克利福德半群上五边形方程的集合论解

Pub Date : 2024-03-27 DOI:10.1007/s00233-024-10421-1
Marzia Mazzotta, Vicent Pérez-Calabuig, Paola Stefanelli
{"title":"克利福德半群上五边形方程的集合论解","authors":"Marzia Mazzotta, Vicent Pérez-Calabuig, Paola Stefanelli","doi":"10.1007/s00233-024-10421-1","DOIUrl":null,"url":null,"abstract":"<p>Given a set-theoretical solution of the pentagon equation <span>\\(s:S\\times S\\rightarrow S\\times S\\)</span> on a set <i>S</i> and writing <span>\\(s(a, b)=(a\\cdot b,\\, \\theta _a(b))\\)</span>, with <span>\\(\\cdot \\)</span> a binary operation on <i>S</i> and <span>\\(\\theta _a\\)</span> a map from <i>S</i> into itself, for every <span>\\(a\\in S\\)</span>, one naturally obtains that <span>\\(\\left( S,\\,\\cdot \\right) \\)</span> is a semigroup. In this paper, we focus on solutions defined in Clifford semigroups <span>\\(\\left( S,\\,\\cdot \\right) \\)</span> satisfying special properties on the set of all idempotents <span>\\({{\\,\\textrm{E}\\,}}(S)\\)</span>. Into the specific, we provide a complete description of <i>idempotent-invariant solutions</i>, namely, those solutions for which <span>\\(\\theta _a\\)</span> remains invariant in <span>\\({{\\,\\textrm{E}\\,}}(S)\\)</span>, for every <span>\\(a\\in S\\)</span>. Moreover, we construct a family of <i>idempotent-fixed solutions</i>, i.e., those solutions for which <span>\\(\\theta _a\\)</span> fixes every element in <span>\\({{\\,\\textrm{E}\\,}}(S)\\)</span> for every <span>\\(a\\in S\\)</span>, from solutions given on each maximal subgroup of <i>S</i>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Set-theoretical solutions of the pentagon equation on Clifford semigroups\",\"authors\":\"Marzia Mazzotta, Vicent Pérez-Calabuig, Paola Stefanelli\",\"doi\":\"10.1007/s00233-024-10421-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a set-theoretical solution of the pentagon equation <span>\\\\(s:S\\\\times S\\\\rightarrow S\\\\times S\\\\)</span> on a set <i>S</i> and writing <span>\\\\(s(a, b)=(a\\\\cdot b,\\\\, \\\\theta _a(b))\\\\)</span>, with <span>\\\\(\\\\cdot \\\\)</span> a binary operation on <i>S</i> and <span>\\\\(\\\\theta _a\\\\)</span> a map from <i>S</i> into itself, for every <span>\\\\(a\\\\in S\\\\)</span>, one naturally obtains that <span>\\\\(\\\\left( S,\\\\,\\\\cdot \\\\right) \\\\)</span> is a semigroup. In this paper, we focus on solutions defined in Clifford semigroups <span>\\\\(\\\\left( S,\\\\,\\\\cdot \\\\right) \\\\)</span> satisfying special properties on the set of all idempotents <span>\\\\({{\\\\,\\\\textrm{E}\\\\,}}(S)\\\\)</span>. Into the specific, we provide a complete description of <i>idempotent-invariant solutions</i>, namely, those solutions for which <span>\\\\(\\\\theta _a\\\\)</span> remains invariant in <span>\\\\({{\\\\,\\\\textrm{E}\\\\,}}(S)\\\\)</span>, for every <span>\\\\(a\\\\in S\\\\)</span>. Moreover, we construct a family of <i>idempotent-fixed solutions</i>, i.e., those solutions for which <span>\\\\(\\\\theta _a\\\\)</span> fixes every element in <span>\\\\({{\\\\,\\\\textrm{E}\\\\,}}(S)\\\\)</span> for every <span>\\\\(a\\\\in S\\\\)</span>, from solutions given on each maximal subgroup of <i>S</i>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-024-10421-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10421-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个五边形方程的集合理论解Stimes S\rightarrow S\times S\) on a set S and writing \(s(a, b)=(a\cdot b,\, \theta _a(b))\)、对于S中的每一个(a),我们自然会得到(\left( S,\,\cdot\right))是一个半群。在本文中,我们关注定义在克利福德半群 \(\left( S,\cdot \right) \)中的解,它满足所有idempotents \({{\,\textrm{E}\,}}(S)\)集合上的特殊性质。在具体的内容中,我们提供了对idempotent-invariant解的完整描述,即对于每一个\(a\in S\) ,\(\theta _a\)在\({{\,\textrm{E}\,}(S)\)中保持不变的那些解。)此外,我们从S的每个最大子群上给出的解中构造了一个empotent-fixed解的族,即对于每个\(a\in S),\(theta _a\)固定了\({{\,\textrm{E}\,}(S)\)中的每个元素的那些解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Set-theoretical solutions of the pentagon equation on Clifford semigroups

分享
查看原文
Set-theoretical solutions of the pentagon equation on Clifford semigroups

Given a set-theoretical solution of the pentagon equation \(s:S\times S\rightarrow S\times S\) on a set S and writing \(s(a, b)=(a\cdot b,\, \theta _a(b))\), with \(\cdot \) a binary operation on S and \(\theta _a\) a map from S into itself, for every \(a\in S\), one naturally obtains that \(\left( S,\,\cdot \right) \) is a semigroup. In this paper, we focus on solutions defined in Clifford semigroups \(\left( S,\,\cdot \right) \) satisfying special properties on the set of all idempotents \({{\,\textrm{E}\,}}(S)\). Into the specific, we provide a complete description of idempotent-invariant solutions, namely, those solutions for which \(\theta _a\) remains invariant in \({{\,\textrm{E}\,}}(S)\), for every \(a\in S\). Moreover, we construct a family of idempotent-fixed solutions, i.e., those solutions for which \(\theta _a\) fixes every element in \({{\,\textrm{E}\,}}(S)\) for every \(a\in S\), from solutions given on each maximal subgroup of S.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信