保留等价性的限定范围变换半群上的自然偏序

Pub Date : 2024-03-27 DOI:10.1007/s00233-024-10422-0
Kritsada Sangkhanan, Jintana Sanwong
{"title":"保留等价性的限定范围变换半群上的自然偏序","authors":"Kritsada Sangkhanan, Jintana Sanwong","doi":"10.1007/s00233-024-10422-0","DOIUrl":null,"url":null,"abstract":"<p>Let <i>Y</i> be a nonempty subset of <i>X</i> and <i>T</i>(<i>X</i>, <i>Y</i>) the set of all functions from <i>X</i> into <i>Y</i>. Then <i>T</i>(<i>X</i>, <i>Y</i>) with composition is a subsemigroup of the full transformation semigroup <i>T</i>(<i>X</i>). Let <i>E</i> be a nontrivial equivalence on <i>X</i>. Define a subsemigroup <span>\\(T_E(X,Y)\\)</span> of <i>T</i>(<i>X</i>, <i>Y</i>) by </p><span>$$\\begin{aligned} T_E(X,Y)=\\{\\alpha \\in T(X,Y):\\forall (x,y)\\in E, (x\\alpha ,y\\alpha )\\in E\\}. \\end{aligned}$$</span><p>We study <span>\\(T_E(X,Y)\\)</span> with the natural partial order and determine when two elements are related under this order. We also give a characterization of compatibility on <span>\\(T_E(X,Y)\\)</span> and then describe the maximal and minimal elements.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The natural partial order on semigroups of transformations with restricted range that preserve an equivalence\",\"authors\":\"Kritsada Sangkhanan, Jintana Sanwong\",\"doi\":\"10.1007/s00233-024-10422-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>Y</i> be a nonempty subset of <i>X</i> and <i>T</i>(<i>X</i>, <i>Y</i>) the set of all functions from <i>X</i> into <i>Y</i>. Then <i>T</i>(<i>X</i>, <i>Y</i>) with composition is a subsemigroup of the full transformation semigroup <i>T</i>(<i>X</i>). Let <i>E</i> be a nontrivial equivalence on <i>X</i>. Define a subsemigroup <span>\\\\(T_E(X,Y)\\\\)</span> of <i>T</i>(<i>X</i>, <i>Y</i>) by </p><span>$$\\\\begin{aligned} T_E(X,Y)=\\\\{\\\\alpha \\\\in T(X,Y):\\\\forall (x,y)\\\\in E, (x\\\\alpha ,y\\\\alpha )\\\\in E\\\\}. \\\\end{aligned}$$</span><p>We study <span>\\\\(T_E(X,Y)\\\\)</span> with the natural partial order and determine when two elements are related under this order. We also give a characterization of compatibility on <span>\\\\(T_E(X,Y)\\\\)</span> and then describe the maximal and minimal elements.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-024-10422-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10422-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 Y 是 X 的一个非空子集,T(X, Y) 是所有从 X 到 Y 的函数的集合。那么,T(X, Y) 的组成是完整变换半群 T(X) 的一个子半群。定义 T(X, Y) 的子半群 \(T_E(X,Y)\) 为 $$\begin{aligned}.T_E(X,Y)={T(X,Y)中的(x,y):\forall (x,y)\in E, (x\alpha ,y\alpha )\in E\}.\end{aligned}$$我们用自然偏序来研究 \(T_E(X,Y)\),并确定两个元素在此序下何时相关。我们还给出了 \(T_E(X,Y)\)上相容性的特征,然后描述了最大元素和最小元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The natural partial order on semigroups of transformations with restricted range that preserve an equivalence

Let Y be a nonempty subset of X and T(XY) the set of all functions from X into Y. Then T(XY) with composition is a subsemigroup of the full transformation semigroup T(X). Let E be a nontrivial equivalence on X. Define a subsemigroup \(T_E(X,Y)\) of T(XY) by

$$\begin{aligned} T_E(X,Y)=\{\alpha \in T(X,Y):\forall (x,y)\in E, (x\alpha ,y\alpha )\in E\}. \end{aligned}$$

We study \(T_E(X,Y)\) with the natural partial order and determine when two elements are related under this order. We also give a characterization of compatibility on \(T_E(X,Y)\) and then describe the maximal and minimal elements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信