{"title":"保留等价性的限定范围变换半群上的自然偏序","authors":"Kritsada Sangkhanan, Jintana Sanwong","doi":"10.1007/s00233-024-10422-0","DOIUrl":null,"url":null,"abstract":"<p>Let <i>Y</i> be a nonempty subset of <i>X</i> and <i>T</i>(<i>X</i>, <i>Y</i>) the set of all functions from <i>X</i> into <i>Y</i>. Then <i>T</i>(<i>X</i>, <i>Y</i>) with composition is a subsemigroup of the full transformation semigroup <i>T</i>(<i>X</i>). Let <i>E</i> be a nontrivial equivalence on <i>X</i>. Define a subsemigroup <span>\\(T_E(X,Y)\\)</span> of <i>T</i>(<i>X</i>, <i>Y</i>) by </p><span>$$\\begin{aligned} T_E(X,Y)=\\{\\alpha \\in T(X,Y):\\forall (x,y)\\in E, (x\\alpha ,y\\alpha )\\in E\\}. \\end{aligned}$$</span><p>We study <span>\\(T_E(X,Y)\\)</span> with the natural partial order and determine when two elements are related under this order. We also give a characterization of compatibility on <span>\\(T_E(X,Y)\\)</span> and then describe the maximal and minimal elements.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The natural partial order on semigroups of transformations with restricted range that preserve an equivalence\",\"authors\":\"Kritsada Sangkhanan, Jintana Sanwong\",\"doi\":\"10.1007/s00233-024-10422-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>Y</i> be a nonempty subset of <i>X</i> and <i>T</i>(<i>X</i>, <i>Y</i>) the set of all functions from <i>X</i> into <i>Y</i>. Then <i>T</i>(<i>X</i>, <i>Y</i>) with composition is a subsemigroup of the full transformation semigroup <i>T</i>(<i>X</i>). Let <i>E</i> be a nontrivial equivalence on <i>X</i>. Define a subsemigroup <span>\\\\(T_E(X,Y)\\\\)</span> of <i>T</i>(<i>X</i>, <i>Y</i>) by </p><span>$$\\\\begin{aligned} T_E(X,Y)=\\\\{\\\\alpha \\\\in T(X,Y):\\\\forall (x,y)\\\\in E, (x\\\\alpha ,y\\\\alpha )\\\\in E\\\\}. \\\\end{aligned}$$</span><p>We study <span>\\\\(T_E(X,Y)\\\\)</span> with the natural partial order and determine when two elements are related under this order. We also give a characterization of compatibility on <span>\\\\(T_E(X,Y)\\\\)</span> and then describe the maximal and minimal elements.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-024-10422-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10422-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 Y 是 X 的一个非空子集,T(X, Y) 是所有从 X 到 Y 的函数的集合。那么,T(X, Y) 的组成是完整变换半群 T(X) 的一个子半群。定义 T(X, Y) 的子半群 \(T_E(X,Y)\) 为 $$\begin{aligned}.T_E(X,Y)={T(X,Y)中的(x,y):\forall (x,y)\in E, (x\alpha ,y\alpha )\in E\}.\end{aligned}$$我们用自然偏序来研究 \(T_E(X,Y)\),并确定两个元素在此序下何时相关。我们还给出了 \(T_E(X,Y)\)上相容性的特征,然后描述了最大元素和最小元素。
The natural partial order on semigroups of transformations with restricted range that preserve an equivalence
Let Y be a nonempty subset of X and T(X, Y) the set of all functions from X into Y. Then T(X, Y) with composition is a subsemigroup of the full transformation semigroup T(X). Let E be a nontrivial equivalence on X. Define a subsemigroup \(T_E(X,Y)\) of T(X, Y) by
We study \(T_E(X,Y)\) with the natural partial order and determine when two elements are related under this order. We also give a characterization of compatibility on \(T_E(X,Y)\) and then describe the maximal and minimal elements.