Exponential stability of extensible beams equation with Balakrishnan–Taylor, strong and localized nonlinear damping

Pub Date : 2024-03-22 DOI:10.1007/s00233-024-10419-9
Zayd Hajjej
{"title":"Exponential stability of extensible beams equation with Balakrishnan–Taylor, strong and localized nonlinear damping","authors":"Zayd Hajjej","doi":"10.1007/s00233-024-10419-9","DOIUrl":null,"url":null,"abstract":"<p>We study a nonlinear Cauchy problem modeling the motion of an extensible beam </p><span>$$\\begin{aligned} \\vert y_t\\vert ^{r}y_{tt}{} &amp; {} +\\gamma \\Delta ^2 y_{tt}+\\Delta ^2y-\\left( a+b\\vert \\vert \\nabla y\\vert \\vert ^2+c (\\nabla y, \\nabla y_t)\\right) \\Delta y\\\\{} &amp; {} \\quad +\\Delta ^2 y_t+ d(x)h(y_t)+f(y)=0, \\end{aligned}$$</span><p>in a bounded domain of <span>\\(\\mathbb {R}^N\\)</span>, with clamped boundary conditions in either cases: when <span>\\(r=\\gamma =0\\)</span> or else when <i>r</i> and <span>\\(\\gamma \\)</span> are positive. We prove, in both cases, the existence of solutions and the exponential decay of energy.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10419-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study a nonlinear Cauchy problem modeling the motion of an extensible beam

$$\begin{aligned} \vert y_t\vert ^{r}y_{tt}{} & {} +\gamma \Delta ^2 y_{tt}+\Delta ^2y-\left( a+b\vert \vert \nabla y\vert \vert ^2+c (\nabla y, \nabla y_t)\right) \Delta y\\{} & {} \quad +\Delta ^2 y_t+ d(x)h(y_t)+f(y)=0, \end{aligned}$$

in a bounded domain of \(\mathbb {R}^N\), with clamped boundary conditions in either cases: when \(r=\gamma =0\) or else when r and \(\gamma \) are positive. We prove, in both cases, the existence of solutions and the exponential decay of energy.

分享
查看原文
具有 Balakrishnan-Taylor、强和局部非线性阻尼的可扩展梁方程的指数稳定性
我们研究了一个模拟可伸展梁运动的非线性考奇问题 $$\begin{aligned}\vert y_t\vert ^{r}y_{tt}{} & {}+\gamma \Delta ^2 y_{tt}+\Delta ^2y-\left( a+b\vert \vert \vert \vert ^2+c (\nabla y, \nabla y_t)\right) \Delta y\{} & {}\quad +\Delta ^2 y_t+ d(x)h(y_t)+f(y)=0, \end{aligned}$$ in a bounded domain of \(\mathbb {R}^N\), with clamped boundary conditions in either cases: when \(r=\gamma =0\) or else when r and\(\gamma \) are positive.在这两种情况下,我们都证明了解的存在和能量的指数衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信