关于有几何和无几何的几乎周期函数的分裂和积分

Pub Date : 2024-03-19 DOI:10.1007/s00233-024-10415-z
Christian Budde, Josef Kreulich
{"title":"关于有几何和无几何的几乎周期函数的分裂和积分","authors":"Christian Budde, Josef Kreulich","doi":"10.1007/s00233-024-10415-z","DOIUrl":null,"url":null,"abstract":"<p>Recently, the authors introduced the notion of weighted semigroups which apply to sun-dual semigroups and especially to the translation semigroup on the space of left continuous functions with values in dual spaces. In this article, we will show that it is sufficient that we either assume geometry on the Banach, or an abelian structure on the minimal subgroup to prove almost periodicity. This yields a different approach to the almost periodicity of semigroups and integrals, by extending Basit generalized Kadets result to general groups, to obtain almost periodicity.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On splittings and integration of almost periodic functions with and without geometry\",\"authors\":\"Christian Budde, Josef Kreulich\",\"doi\":\"10.1007/s00233-024-10415-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, the authors introduced the notion of weighted semigroups which apply to sun-dual semigroups and especially to the translation semigroup on the space of left continuous functions with values in dual spaces. In this article, we will show that it is sufficient that we either assume geometry on the Banach, or an abelian structure on the minimal subgroup to prove almost periodicity. This yields a different approach to the almost periodicity of semigroups and integrals, by extending Basit generalized Kadets result to general groups, to obtain almost periodicity.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-024-10415-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10415-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,作者提出了加权半群的概念,它适用于太阳双半群,特别是适用于在对偶空间有值的左连续函数空间上的平移半群。在本文中,我们将证明,要证明几乎周期性,只需假定巴拿赫几何或最小子群上的无性结构即可。这就产生了一种不同的半群和积分近周期性的方法,通过将巴希特广义卡德茨结果扩展到一般群来获得近周期性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On splittings and integration of almost periodic functions with and without geometry

Recently, the authors introduced the notion of weighted semigroups which apply to sun-dual semigroups and especially to the translation semigroup on the space of left continuous functions with values in dual spaces. In this article, we will show that it is sufficient that we either assume geometry on the Banach, or an abelian structure on the minimal subgroup to prove almost periodicity. This yields a different approach to the almost periodicity of semigroups and integrals, by extending Basit generalized Kadets result to general groups, to obtain almost periodicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信