Isobel M Thompson, Dorian A G Audot, Martin B Warner, Joseph Banks, Oliver Logan, Dominic Hudson
{"title":"Error assessment of a three-dimensional underwater motion capture methodology.","authors":"Isobel M Thompson, Dorian A G Audot, Martin B Warner, Joseph Banks, Oliver Logan, Dominic Hudson","doi":"10.1080/14763141.2025.2514234","DOIUrl":"https://doi.org/10.1080/14763141.2025.2514234","url":null,"abstract":"<p><p>Motion analysis technology is used in various settings to assess human kinematics. Assessing human movement underwater presents many challenges, making it important to understand measurement error associated with the setup and calibration of the system ensuring accuracy in resulting kinematics. This study assessed the accuracy across the entire domain of a submerged motion capture methodology. Six Qualisys cameras created an underwater capture volume of 6.9 × 2.1 × 2.1 m<sup>3</sup>. Average error levels were acceptable in four uncertainty trials (<<math><mo>±</mo></math> 5 mm error). By selecting an area of interest that excluded areas with low accuracy near domain borders, measurement error reduced by up to 0.13 mm, up to 1.27 mm lower than outside this area. Interpolated error indicated that intracyclic measurement error may alter measured kinematics by up to 13.80 mm, with error greater than 5 mm affecting over 50% of the kick cycle. Investigating error levels across the domain can inform researchers whether a recalibration is necessary or help to identify areas where high error levels would affect kinematics. This study highlights the need to investigate error levels across a motion capture domain, particularly when this is a large volume, to ensure results obtained from investigations are reliable.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1-17"},"PeriodicalIF":2.0,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144250546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Relationship between explosive lower limb strength and impact force during landing in healthy young individuals.","authors":"Kaisei Yamaki, Daijirou Kanai, Shigehito Matsubara, Takeshi Shimamura, Takasuke Miyazaki, Keita Honda","doi":"10.1080/14763141.2025.2514231","DOIUrl":"https://doi.org/10.1080/14763141.2025.2514231","url":null,"abstract":"<p><p>Excessive peak vertical ground reaction force (VGRF) during landing is a risk factor for anterior cruciate ligament injury. Identifying the physical characteristics associated with peak VGRF is essential for injury prevention. The relationship between peak VGRF and maximum voluntary contraction (MVC) of the thigh muscle is weak, possibly because MVC does not reflect the muscle strength exerted at the knee joint posture and timing when peak VGRF occurs. This study explored the relationship between peak VGRF during landing and the rate of torque development (RTD), a measure of the rapid generation of muscle force, assessed at three different knee joint flexion angles. RTD and MVC of the quadriceps and hamstrings were measured in 36 physically active adults (18 males) using an isokinetic dynamometer at 30° and 60° knee joint flexion angles, simulating the joint angle at landing, and at a conventional 90° knee joint flexion angle. Results showed a significant negative correlation between hamstring RTD at 30° knee flexion and peak VGRF (<i>r</i> = -0.71, <i>p</i> = 0.001), but no significant correlations were found with others. Therefore, it is important to assess muscle strength at the posture and timing when peak VGRF occurs to reduce peak VGRF and prevent injury.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1-17"},"PeriodicalIF":2.0,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144250547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sian Reynolds, Joel Chidley, Simon Briley, Tom Outram
{"title":"The impact of minor crank length adjustments on lower body cycling kinematics.","authors":"Sian Reynolds, Joel Chidley, Simon Briley, Tom Outram","doi":"10.1080/14763141.2025.2511755","DOIUrl":"https://doi.org/10.1080/14763141.2025.2511755","url":null,"abstract":"<p><p>This study examined the effect of minor crank length adjustments on lower body cycling kinematics and exercise tolerance. Fourteen amateur cyclists performed sub-maximal cycling trials with five different crank lengths, preferred (165.0-172.5 mm), ±5 and 10 mm. An RPE prescription method determined intensity, and three-dimensional kinematics were collected using Vicon motion capture. Statistical parametric mapping was employed to analyse lower body kinematics. Changes in crank length had no effect on the mean power output (199.1 ± 50.5 W). However, minor reductions were associated with significant decreases in knee (0-24%; 58-100%) and hip (0-13%) flexion as well as increases in the anterior pelvic tilt (0-40%; 74-100%). Additionally, shorter cranks resulted in less pelvic obliquity and rotation, hip abduction and knee rotation. Minor reductions in crank length can decrease hip and knee flexion, can limit non-sagittal plane motion and could serve as an effective bike manipulation to reduce the risk of overuse injury. Shorter cranks also enable riders to achieve anterior pelvic tilt and could limit stress on the lumbar spine. As minor adjustments did not impact power output, crank length alterations should be considered during bike fits and by bike manufacturers.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1-14"},"PeriodicalIF":2.0,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144217373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of ankle joint biomechanics and foot postures on Achilles tendon force during running through a simulation study.","authors":"Tomoya Takabayashi, Mutsuaki Edama, Takuma Inai, Masayoshi Kubo","doi":"10.1080/14763141.2025.2511758","DOIUrl":"https://doi.org/10.1080/14763141.2025.2511758","url":null,"abstract":"<p><p>Achilles tendinopathy is a prevalent injury observed among runners. Achilles tendon force (ATF) and differences in foot posture are considered factors in the occurrence of Achilles tendinopathy. This study was conducted using computer simulations. The simulation ranges were determined for the ankle joint angle (-25° to + 25°) and plantarflexion moment (0-160 Nm) at variable running speeds using a public dataset. The ankle angle was used to compute the Achilles tendon moment arm. Moment arms specific to the normal foot, pes cavus, and pes planus were calculated using radiographs from a previous study. Finally, the plantarflexion moment was divided into moment arms to obtain the ATF. For all foot postures, the ATF increased as the ankle dorsiflexion angle and plantarflexion moment increased. At most ankle angles, the ATF was found to be higher value in the order of pes cavus, normal foot, and pes planus. Increasing dorsiflexion angles and plantarflexion moments during running may lead to the occurrence or worsening of Achilles tendon tendinopathy. Additionally, individuals with pes cavus are more likely to develop Achilles tendinopathy than those with other foot postures.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1-11"},"PeriodicalIF":2.0,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144188387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Griffin R Moon, Brian K Leary, Anh-Dung Nguyen, Jean L McCrory
{"title":"A comparison of running biomechanics on track, asphalt, grass, and treadmill using wearable sensors.","authors":"Griffin R Moon, Brian K Leary, Anh-Dung Nguyen, Jean L McCrory","doi":"10.1080/14763141.2025.2511766","DOIUrl":"https://doi.org/10.1080/14763141.2025.2511766","url":null,"abstract":"<p><p>Inertial Measurement Units (IMUs) allow assessment of running biomechanics outdoors on various surfaces. The purpose of our study was to compare peak tibial acceleration (PTA), stance time (ST), stride frequency (SF), and maximum rearfoot eversion velocity (MREV) when running on asphalt, track, grass, and on a treadmill. Twenty healthy participants ran on each surface at their self-selected speed. IMUs were placed on their right tibia and posterior aspect of their right shoe. A timing system was used to ensure consistent speed between surfaces. Thirty steps from each surface were analysed. Separate repeated measures ANOVAs or Friedman tests were performed on each dependent measure, depending on normality. Post-hoc analyses were performed when appropriate. SF, PTA, and MREV differed (<i>p</i> < .001) between surfaces. SF was highest on treadmill (83.4 ± 5.4 strides/sec) and slowest on grass (81.0 ± 4.2 strides/min). PTA was greater outdoors (asphalt: 11.0 ± 2.7 g, grass: 10.7 ± 3.4 g, and track: 10.6 ± 2.3 g), but less on treadmill (7.9 ± 1.6 g). MREV was lowest on grass (394.9 ± 256.5 deg/s) and greatest on track (623.5 ± 299.3 deg/s) and asphalt (620.7 ± 289.1 deg/sec). ST did not differ between surfaces (<i>p</i> = .231). Laboratory-based studies on running biomechanics may not reflect the running gait used on outdoor running surfaces.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1-13"},"PeriodicalIF":2.0,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144163508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A Nordez, C Delhaye, F Teissier, F Colloud, N Peyrot, P Samozino
{"title":"Force-velocity and power-velocity relationships in on-water rowing.","authors":"A Nordez, C Delhaye, F Teissier, F Colloud, N Peyrot, P Samozino","doi":"10.1080/14763141.2025.2511765","DOIUrl":"https://doi.org/10.1080/14763141.2025.2511765","url":null,"abstract":"<p><p>Force-velocity (FV) relationships are used to evaluate athletes and individualise training in several tasks. In rowing, only one previous study has determined FV relationships using ergometers. This study aimed to develop a method to obtain FV relationships during on-water rowing, to assess their quality and inter-day reliability and to compare them with ergometer profiles. Fourteen participants performed 8 all-out starts in instrumented double scull boats with 3 scull lengths under two conditions: two active rowers or one active and one passive rower. The FV relationships, reconstructed with all the conditions, were linear with a high goodness of fit (median R<sup>2</sup>: 0.96), covering 24.6 ± 5.0% of the velocity range. Ninety-five per cent confidence intervals for maximal force (F<sub>0</sub>: 3.9 ± 0.5%) and maximal velocity (V<sub>0</sub>: 6.2 ± 1.5%) were relatively narrow. The coefficient of variation for inter-day reliability was below 10% and intraclass correlation ranging from 0.69 for V<sub>0</sub> to 0.96 for F<sub>0</sub>. Correlations between on-water and ergometer rowing were significant for F<sub>0</sub> (<i>r</i> = 0.70) and P<sub>max</sub> (<i>r</i> = 0.82) but not for V<sub>0</sub> (<i>r</i> = 0.11). F<sub>0</sub> and V<sub>0</sub> were significantly higher (23%) and lower (31%) on the ergometer, respectively. These results highlight a reliable linear FV relationship during on-water rowing to characterise rowing force production capacities, largely affected by on-water technical skills.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1-16"},"PeriodicalIF":2.0,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144163511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashna Ghanbari, Jordyn Vienneau, Sandro R Nigg, Benno M Nigg
{"title":"Effects of selected features of advanced footwear technology on lower limb joint work.","authors":"Ashna Ghanbari, Jordyn Vienneau, Sandro R Nigg, Benno M Nigg","doi":"10.1080/14763141.2025.2508244","DOIUrl":"https://doi.org/10.1080/14763141.2025.2508244","url":null,"abstract":"<p><p>The objective of this study was to isolate the effects of two key components of Advanced Footwear Technology, the curved carbon fibre plate and the midsole material, on lower-limb joint work. Sixteen male recreational runners ran overground at a speed of 3.9 (±5%) metres per second in three shoe conditions: a standard Nike Vaporfly 4% (Original VP4), a modified version without the curved carbon fibre plate (No Plate) and a version with the PEBA midsole material replaced with EVA foam (EVA). Motion capture and force platform data were recorded to determine positive and negative metatarsophalangeal, ankle, knee, and hip joint work, and positive and negative foot + footwear work across the different conditions. Removing the carbon fibre plate significantly increased negative work at the metatarsophalangeal joint and positive work at the ankle. Replacing PEBA with EVA significantly reduced positive foot + footwear work. The findings of this study highlighted a group effect of the curved carbon fibre plate, which redistributed positive lower-limb joint work from the ankle to the metatarsophalangeal joint. Conversely, the results highlighted subject-specific differences in response to the midsole material, emphasising the importance of considering individual variability in footwear design elements to optimise athletic performance.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1-15"},"PeriodicalIF":2.0,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144151740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hannah B Archer, Sewan Kim, Harper E Stewart, Jill L McNitt-Gray, Michael E Hahn, Rodger Kram, Alena M Grabowski
{"title":"Can biomechanical variables and asymmetry predict bone stress injuries in collegiate distance runners?","authors":"Hannah B Archer, Sewan Kim, Harper E Stewart, Jill L McNitt-Gray, Michael E Hahn, Rodger Kram, Alena M Grabowski","doi":"10.1080/14763141.2025.2506563","DOIUrl":"https://doi.org/10.1080/14763141.2025.2506563","url":null,"abstract":"<p><p>Runners are susceptible to bone stress injuries (BSI), due in part to cumulative loading, which is affected by force magnitude and frequency. We identified biomechanical variables that may predict BSI incidence by following 30 collegiate distance runners over three years. Athletes were classified as either uninjured (<i>n</i> = 8 male, 16 female) or injured (<i>n</i> = 3 male, 3 female) if they sustained a BSI. We measured ground reaction forces while athletes ran on a force-instrumented treadmill, and analysed step frequency (<i>f</i><sub>step</sub>), contact length (<i>L</i><sub>c</sub>), and bodyweight-normalised stance average vertical ground reaction force (<i>F</i><sub>avg</sub>) alongside asymmetry (expressed as symmetry index, SI). A secondary analysis examined inter-limb biomechanical changes in six runners prior to sustaining a BSI. We found an interaction between injury status, sex, and speed on <i>F</i><sub>avg</sub> values (<i>p</i> = 0.026). Forty-seven weeks prior to injury, <i>F</i><sub>avg</sub> values were greater in the unaffected leg than the affected leg (<i>p</i> = 0.022). In addition, female injured runners exhibited 1.62 percentage points greater <i>f</i><sub>step</sub> SI than uninjured females at 4.9 m/s (<i>p</i> = 0.030). Future research that incorporates more frequent data collection is needed to integrate biomechanical variables and physiological risk factors for injury prediction and prevention among collegiate distance runners.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1-16"},"PeriodicalIF":2.0,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144144231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Barbara J Schornstein, Meredith D Wells, D Clark Dickin, Lisa S Jutte, Henry Wang
{"title":"Biomechanical adjustments during an exhaustive treadmill run: comparison of compression tights and running shorts.","authors":"Barbara J Schornstein, Meredith D Wells, D Clark Dickin, Lisa S Jutte, Henry Wang","doi":"10.1080/14763141.2025.2508241","DOIUrl":"https://doi.org/10.1080/14763141.2025.2508241","url":null,"abstract":"<p><p>Fatigue induces changes to running form resulting in movements that are less efficient. Reducing the amount of fatigue and its subsequent effect on form is valuable for improving running performance. It is unknown what effects compressive clothing has on musculature; however, there have been claims that it may reduce fatigue. The aim of this study was to determine whether compressive tights or running shorts are more beneficial for improving performance when running to exhaustion. Eleven runners ran at their current five-kilometre race pace on a treadmill to voluntary exhaustion in a repeated measures design wearing both compression tights and running shorts while their biomechanics, heart rate and rate of perceived exertion were recorded. Fatigue effects showed a less extended knee angle (<i>p</i> = 0.03) and a smaller ankle dorsiflexion angle (<i>p</i> = 0.04) at initial contact, and increased loading rate (<i>p</i> = 0.02) and vertical impact peak (<i>p</i> = 0.05). Condition effects included a shorter stride length (<i>p</i> = 0.01), faster stride rate (<i>p</i> = 0.01), and decreased hip range of motion (<i>p</i> = 0.02) with compression tights. There was no significant difference in time to exhaustion between conditions (<i>p</i> = 0.88). Thus, the length of time to fatigue was unaffected by condition, however, the altered mechanics when running in compression tights may reduce potential injury.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1-11"},"PeriodicalIF":2.0,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144129140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthew Slopecki, Mathieu Charbonneau, Simon Deguire, Julie N Côté, Julien Clément
{"title":"Technical performance analyses in elite Paralympic swimming using wearable technology: two case studies.","authors":"Matthew Slopecki, Mathieu Charbonneau, Simon Deguire, Julie N Côté, Julien Clément","doi":"10.1080/14763141.2025.2508239","DOIUrl":"https://doi.org/10.1080/14763141.2025.2508239","url":null,"abstract":"<p><p>We present two case studies that make use of wearable technology to provide performance indicators on optimal swim stroke techniques in breaststroke (case 1) and freestyle (case 2). In the first case study, we present and use a novel metric, the velocity variation score, to maximise breaststroke technical performance for an athlete with Achondroplasia Dwarfism, by comparing their normal technique to two alternates, focused on 1) fast arm sculling and 2) high stroke rate (HSR). We observed lower velocity variation scores using the adapted breaststroke techniques (<i>p</i> < 0.001), the HSR technique had the lowest velocity variation score (<i>p</i> < 0.001). In the second case, we determine the optimal breathing strategy, breathing to the impaired or unimpaired side, for an athlete with a unilateral hand impairment performing freestyle swimming. Results showed that the forward velocity was significantly lower in the left-to-right stroke cycle transition and right (arm pull) when breathing to the impaired (left) side. To varying degrees, these cases demonstrate that wearable-based intra-stroke analyses can provide individualised technique recommendations that benefit competitive race peformance.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1-14"},"PeriodicalIF":2.0,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144129268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}